ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 8 (1992), S. 115-131 
    ISSN: 0743-4634
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology and Plant Molecular Biology 44 (1993), S. 13-32 
    ISSN: 1040-2519
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0014-5793
    Keywords: (Solanum tuberosum) ; Evolution ; Mitochondrial tRNA^L^e^u structure ; Plant mitochondria
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Gene Structure and Expression 1129 (1992), S. 273-277 
    ISSN: 0167-4781
    Keywords: Dot blot hybridization ; Nylon membrane ; tRNA
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0983
    Keywords: Key words Chloroplast DNA insertion ; Mitochondrial DNA ; Potato ; trnN ; trnH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two identical “chloroplast-like” tRNAAsn genes, trnN1 and trnN2, have been identified in the potato (Solanum tuberosum) mitochondrial genome. The flanking sequences of trnN1 are unrelated to the corresponding authentic potato chloroplast regions, whilst those of trnN2 are very similar to the chloroplast sequences. The trnN1 copy is present in the mitochondrial genome of various plants whereas the second copy, trnN2, is absent from all the other plant genomes studied so far. Interestingly, both trnN copies are expressed in potato mitochondria. Sequences flanking the chloroplast-like tRNAHis gene (trnH), present as a single copy in the potato mitochondrial DNA, are unrelated to the corresponding chloroplast sequences, whereas chloroplast-derived sequences have been maintained in the vicinity of the maize chloroplast-like mitochondrial trnH gene. However, both the potato and the maize trnH are expressed in mitochondria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5028
    Keywords: bean ; chloroplast tRNAPhe ; leaf development ; nucleotides (minor)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Bean (Phaseolus vulgaris cv. Saxa) chloroplasts contain two tRNAPhe species, namely tRNAPhe1 and tRNAPhe2. By sequence determination, we show that tRNAPhe2 is identical to the previously sequenced tRNAPhe1 except for two undermodified nucleotides. By reversed-phase chromatography analyses, we demonstrate that the relative amounts of these two chloroplast tRNAsPhe vary during leaf development: in etiolated leaves the undermodified tRNAPhe2 only represents 15% of total chloroplast tRNAPhe, during development and greening it increases to reach 60% in 8-day-old leaves, and it then decreases to 9% in senescing leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5028
    Keywords: plant mitochondrial transfer RNA ; potato ; promoter ; tRNA processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to identify the sequences promoting the expression of plant mitochondrial tRNA genes, we have characterized the trnS (GCU), trnF (GAA) and trnP (UGG) transcription unit of the potato mitochondrial genome. These three tRNA genes were shown to be co-transcribed as a 1800 nt long primary transcript. The transcription initiation site located 305 to 312 nt upstream of trnS is surrounded by a purine-rich region but does not contain the consensus motif proposed as a promoter element in dicotyledonous plants. Differential labelling of potato mitochondrial RNA with either guanylyltransferase or T4 polynucleotide kinase suggests that this site corresponds to the unique functional region responsible for the transcription of these three tRNA genes. The initiation site recently found upstream of Oenothera mitochondrial trnF does not seem to be used in potato mitochondria, although a very similar sequence is present 317 nt upstream of the corresponding potato gene. Major processing sites were identified at the 3′ end of each tRNA gene. Another processing site, surrounded by a double hairpin structure, is located 498 nt downstream of trnP in stretch of 10 A residues. As judged from northern experiments, this region is close to the determination site of this transcription unit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5028
    Keywords: plant mitochondria ; tRNA genes ; Petunia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 22 tRNA genes corresponding to 17 tRNA species were localized on the master circle of Petunia hybrida mitochondrial (mt) DNA. Genes for trnN, trnM, trnS-GGA, trnW and trnH are of the ‘chloroplast-like’ type and presumably originate from promiscuous chloroplast (cp) DNA sequences inserted into the petunia mitochondrial genome. A comparison of the mt tRNAs or tRNA genes population present in two monocotyledonous plants (wheat and maize) and two dicotyledonous plants (petunia and potato) show slight differences in the genetic origin of individual tRNAs. The organization of the petunia mt tRNA genes as well as the number of tRNA gene copies, compared to other plant species, is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5028
    Keywords: plant mitochondrial genome ; potato ; tRNAf Met ; tRNA pseudogene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The initiator methionine transfer RNA (tRNAf Met) gene was identified on a 347 bpEco RI-Hind III DNA fragment of the potato mitochondrial (mt) genome. The sequence of this gene shows 1 to 7 nucleotide differences with the other plant mt tRNAsf Met or tRNAf Met genes studied so far. Whereas the tRNAf Met gene is present as a single copy in the potato mt genome, a tRNA ‘pseudogene’ corresponding to 60% of a complete tRNA (from the 5′ end to the variable region) and located at 105 nucleotides upstream of the tRNAf Met gene on the opposite strand was shown to be repeated at least three times. Furthermore, the physical environment of the tRNAf Met gene in the mt genome is very different among plants, which suggests that the tRNAf Met gene region has often been implicated in recombination events of plant mt genomes leading to important rearrangements in gene order.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...