ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 27 (1992), S. 161-174 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The toughening of an aromatic amine-cured diglycidyl ether of bisphenol-A epoxy with particles of crystalline polymers was studied. The crystalline polymers were poly (butylene terephthalate), nylon 6, and poly(vinylidene fluoride). Nylon 6 and poly(vinylidene fluoride) were found to toughen the epoxy about as well as did an equivalent amount of CTBN rubber. Poly(butylene terephthalate) was found to toughen the epoxy about twice as well as did the rubber. The toughness of poly(butylene terephthalate)-epoxy blends was independent of particle size for sizes in the range of tens of micrometres, but the toughness of the nylon 6-epoxy blends decreased with increasing particle size for sizes smaller than about 40 μm. There was no loss of either Young's modulus or yield strength of the epoxy with the inclusion of either nylon 6 or poly(butylene terephthalate) and less loss of these with the inclusion of poly(vinylidene fluoride) than with the inclusion of rubber. Toughness seems to have arisen from a combination of mechanisms. The poly(butylene terephthalate)-epoxy blends alone seem to have gained toughness from phase-transformation toughening. Crack path alteration and the formation of steps and welts and secondary crack bridging seem to have accounted for an especially large part of the fracture energy of the poly(vinylidene fluoride)-epoxy blends. Secondary crack nucleation contributed to the toughness of the nylon 6-epoxy blends.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 27 (1992), S. 161-174 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The toughening of an aromatic amine-cured diglycidyl ether of bisphenol-A epoxy with particles of crystalline polymers was studied. The crystalline polymers were poly (butylene terephthalate), nylon 6, and poly(vinylidene fluoride). Nylon 6 and poly(vinylidene fluoride) were found to toughen the epoxy about as well as did an equivalent amount of CTBN rubber. Poly(butylene terephthalate) was found to toughen the epoxy about twice as well as did the rubber. The toughness of poly(butylene terephthalate)-epoxy blends was independent of particle size for sizes in the range of tens of micrometres, but the toughness of the nylon 6-epoxy blends decreased with increasing particle size for sizes smaller than about 40 μm. There was no loss of either Young's modulus or yield strength of the epoxy with the inclusion of either nylon 6 or poly(butylene terephthalate) and less loss of these with the inclusion of poly(vinylidene fluoride) than with the inclusion of rubber. Toughness seems to have arisen from a combination of mechanisms. The poly(butylene terephthalate)-epoxy blends alone seem to have gained toughness from phase-transformation toughening. Crack path alteration and the formation of steps and welts and secondary crack bridging seem to have accounted for an especially large part of the fracture energy of the poly(vinylidene fluoride)-epoxy blends. Secondary crack nucleation contributed to the toughness of the nylon 6-epoxy blends.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The structure and properties of ternary blends of epoxy with poly(ether sulphone) (PES) and carboxyl-terminated butadiene-acrylonitrile rubber (CTBN) have been investigated. In these blends, the phase separation occurs in two stages: a macrophase separation during mixing and a microphase separation during curing. At low PES compositions, the PES-rich spherical domains are dispersed. With increasing PES composition, a co-continuous structure develops and, eventually, the phases are inverted. Regardless of structure change, the modulus and yield stress changes with composition just follow the simple rule of mixtures. However, the fracture toughness of these blends exhibits a synergistic effect. Among the various compositions, 5∶5 weight ratio of CTBN to PES exhibited the maximum toughness, which was 140% larger than that calculated from the rule of mixtures. The synergism is believed to be due to the bridging by the PES-rich phase followed by a lowering of the yield stress. The lowering of the yield stress can enlarge the process zone size and the amount of plastic dilatation of the matrix.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-07-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-10
    Description: The sensitivities of meteorological forecast errors associated with Asian dust transport events to changes in the initial state were evaluated for 46 occurrences that affected the Korean Peninsula from 2005 to 2010. Adjoint-based sensitivities were used to determine these sensitivities. Sensitive regions were located primarily over two regions upstream from the Korean Peninsula: the northern source region, including areas of Mongolia and northern China, and the Tibetan Plateau. Depending on transport trajectories, month, and year, the sensitive regions were located over either the northern source regions or the Tibetan Plateau. That is, the Asian dust forecast in Korea was found to be sensitive to the meteorological fields over the northern source regions, but also those over the Tibetan Plateau even though the latter is not a dust source region or an upstream area according to the transport trajectories. Employing additional observations at existing instrumentation sites or developing new observational sites in both sensitive regions could be beneficial in reducing the atmospheric circulation forecast errors in East Asia, thus improving the accuracy of transport forecasts of Asian dust events affecting the Korean Peninsula. Keywords: adjoint sensitivity, meteorological forecast error, Asian dust transport, sensitive regions, northern source region, Tibetan Plateau (Published: 9 October 2013) Citation: Tellus B 2013, 65 , 20554, http://dx.doi.org/10.3402/tellusb.v65i0.20554
    Print ISSN: 0280-6509
    Electronic ISSN: 1600-0889
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-01-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-05-20
    Print ISSN: 0021-4922
    Electronic ISSN: 1347-4065
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...