ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-06-12
    Description: High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193940/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193940/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shalek, Alex K -- Satija, Rahul -- Shuga, Joe -- Trombetta, John J -- Gennert, Dave -- Lu, Diana -- Chen, Peilin -- Gertner, Rona S -- Gaublomme, Jellert T -- Yosef, Nir -- Schwartz, Schraga -- Fowler, Brian -- Weaver, Suzanne -- Wang, Jing -- Wang, Xiaohui -- Ding, Ruihua -- Raychowdhury, Raktima -- Friedman, Nir -- Hacohen, Nir -- Park, Hongkun -- May, Andrew P -- Regev, Aviv -- 1F32HD075541-01/HD/NICHD NIH HHS/ -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 19;510(7505):363-9. doi: 10.1038/nature13437. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA [3] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [4]. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2]. ; 1] Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, California 94080, USA [2]. ; Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, California 94080, USA. ; 1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA. ; School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Center for Immunology and Inflammatory Diseases & Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA [3] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919153" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Viral/pharmacology ; Base Sequence ; Cell Communication ; Dendritic Cells/drug effects/*immunology ; Gene Expression Profiling ; Gene Expression Regulation/*immunology ; Immunity/*genetics ; Interferon-beta/genetics ; Mice ; Microfluidic Analytical Techniques ; *Paracrine Communication ; Principal Component Analysis ; RNA, Messenger/chemistry/genetics ; Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-21
    Description: Recent molecular studies have shown that, even when derived from a seemingly homogenous population, individual cells can exhibit substantial differences in gene expression, protein levels and phenotypic output, with important functional consequences. Existing studies of cellular heterogeneity, however, have typically measured only a few pre-selected RNAs or proteins simultaneously, because genomic profiling methods could not be applied to single cells until very recently. Here we use single-cell RNA sequencing to investigate heterogeneity in the response of mouse bone-marrow-derived dendritic cells (BMDCs) to lipopolysaccharide. We find extensive, and previously unobserved, bimodal variation in messenger RNA abundance and splicing patterns, which we validate by RNA-fluorescence in situ hybridization for select transcripts. In particular, hundreds of key immune genes are bimodally expressed across cells, surprisingly even for genes that are very highly expressed at the population average. Moreover, splicing patterns demonstrate previously unobserved levels of heterogeneity between cells. Some of the observed bimodality can be attributed to closely related, yet distinct, known maturity states of BMDCs; other portions reflect differences in the usage of key regulatory circuits. For example, we identify a module of 137 highly variable, yet co-regulated, antiviral response genes. Using cells from knockout mice, we show that variability in this module may be propagated through an interferon feedback circuit, involving the transcriptional regulators Stat2 and Irf7. Our study demonstrates the power and promise of single-cell genomics in uncovering functional diversity between cells and in deciphering cell states and circuits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683364/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683364/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shalek, Alex K -- Satija, Rahul -- Adiconis, Xian -- Gertner, Rona S -- Gaublomme, Jellert T -- Raychowdhury, Raktima -- Schwartz, Schraga -- Yosef, Nir -- Malboeuf, Christine -- Lu, Diana -- Trombetta, John J -- Gennert, Dave -- Gnirke, Andreas -- Goren, Alon -- Hacohen, Nir -- Levin, Joshua Z -- Park, Hongkun -- Regev, Aviv -- 1F32HD075541-01/HD/NICHD NIH HHS/ -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1 DA035083/DA/NIDA NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- DP2 OD002230/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 13;498(7453):236-40. doi: 10.1038/nature12172. Epub 2013 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23685454" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/cytology/immunology ; Dendritic Cells/cytology/immunology/*metabolism ; *Gene Expression Profiling ; Gene Expression Regulation/*immunology ; In Situ Hybridization, Fluorescence ; Interferon Regulatory Factor-7 ; Interferons/immunology ; Lipopolysaccharides/immunology ; Mice ; Mice, Knockout ; Protein Isoforms/genetics ; RNA Splicing/*immunology ; RNA, Messenger/analysis/genetics ; Reproducibility of Results ; STAT2 Transcription Factor ; Sequence Analysis, RNA ; *Single-Cell Analysis ; Transcriptome/*genetics ; Viruses/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-08
    Description: Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based perturbation tools to systematically derive and experimentally validate a model of the dynamic regulatory network that controls the differentiation of mouse TH17 cells, a proinflammatory T-cell subset that has been implicated in the pathogenesis of multiple autoimmune diseases. The TH17 transcriptional network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, the coupled action of which may be essential for maintaining the balance between TH17 and other CD4(+) T-cell subsets. Our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles; it also highlights novel drug targets for controlling TH17 cell differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yosef, Nir -- Shalek, Alex K -- Gaublomme, Jellert T -- Jin, Hulin -- Lee, Youjin -- Awasthi, Amit -- Wu, Chuan -- Karwacz, Katarzyna -- Xiao, Sheng -- Jorgolli, Marsela -- Gennert, David -- Satija, Rahul -- Shakya, Arvind -- Lu, Diana Y -- Trombetta, John J -- Pillai, Meenu R -- Ratcliffe, Peter J -- Coleman, Mathew L -- Bix, Mark -- Tantin, Dean -- Park, Hongkun -- Kuchroo, Vijay K -- Regev, Aviv -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- AI073748/AI/NIAID NIH HHS/ -- AI45757/AI/NIAID NIH HHS/ -- DP1 OD003893/OD/NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- K01 DK090105/DK/NIDDK NIH HHS/ -- NS 30843/NS/NINDS NIH HHS/ -- NS045937/NS/NINDS NIH HHS/ -- P01 AI045757/AI/NIAID NIH HHS/ -- P01 AI073748/AI/NIAID NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- R01 AI100873/AI/NIAID NIH HHS/ -- R01 NS030843/NS/NINDS NIH HHS/ -- R01 NS045937/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 25;496(7446):461-8. doi: 10.1038/nature11981. Epub 2013 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23467089" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/metabolism ; Cell Differentiation/*genetics ; Cells, Cultured ; DNA/genetics/metabolism ; Forkhead Transcription Factors/metabolism ; Gene Knockdown Techniques ; Gene Regulatory Networks/*genetics ; Genome/genetics ; Interferon-gamma/biosynthesis ; Interleukin-2/genetics ; Mice ; Mice, Inbred C57BL ; Nanowires ; Neoplasm Proteins/metabolism ; Nuclear Proteins/metabolism ; RNA, Messenger/genetics/metabolism ; Reproducibility of Results ; Silicon ; Th17 Cells/*cytology/immunology/*metabolism ; Time Factors ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-05
    Description: Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates; however, the regulatory circuits specifying these states and enabling transitions between them are not well understood. Here we set out to characterize transcriptional heterogeneity in mouse PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signalling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signalling pathways and chromatin regulators. Notably, either removal of mature microRNAs or pharmacological blockage of signalling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal and a distinct chromatin state, an effect mediated by opposing microRNA families acting on the Myc/Lin28/let-7 axis. These data provide insight into the nature of transcriptional heterogeneity in PSCs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256722/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256722/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Roshan M -- Cahan, Patrick -- Shalek, Alex K -- Satija, Rahul -- DaleyKeyser, A Jay -- Li, Hu -- Zhang, Jin -- Pardee, Keith -- Gennert, David -- Trombetta, John J -- Ferrante, Thomas C -- Regev, Aviv -- Daley, George Q -- Collins, James J -- 1F32HD075541-01/HD/NICHD NIH HHS/ -- 1P50HG006193- 01/HG/NHGRI NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- K01 DK096013/DK/NIDDK NIH HHS/ -- K01DK096013/DK/NIDDK NIH HHS/ -- NIH-P30-HD18655/HD/NICHD NIH HHS/ -- P50 HG005550/HG/NHGRI NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- P50HG005550/HG/NHGRI NIH HHS/ -- R01 GM107536/GM/NIGMS NIH HHS/ -- R01GM107536/GM/NIGMS NIH HHS/ -- R24 DK092760/DK/NIDDK NIH HHS/ -- R24DK092760/DK/NIDDK NIH HHS/ -- T32 HL007623/HL/NHLBI NIH HHS/ -- T32HL007623/HL/NHLBI NIH HHS/ -- T32HL066987/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):56-61. doi: 10.1038/nature13920.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA [2] Howard Hughes Medical Institute, Department of Biomedical Engineering, Center of Synthetic Biology, Boston University, Boston, Massachusetts 02215, USA. ; Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA. ; Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA. ; Center for Individualized Medicine, Department of Molecular Pharmacology &Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471879" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death ; Cell Division ; Embryonic Stem Cells/cytology/physiology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Mice ; MicroRNAs/metabolism ; Pluripotent Stem Cells/cytology/*physiology ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-14
    Description: Human cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states, but current models do not adequately reflect tumor composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430 cells from five primary glioblastomas, which we found to be inherently variable in their expression of diverse transcriptional programs related to oncogenic signaling, proliferation, complement/immune response, and hypoxia. We also observed a continuum of stemness-related expression states that enabled us to identify putative regulators of stemness in vivo. Finally, we show that established glioblastoma subtype classifiers are variably expressed across individual cells within a tumor and demonstrate the potential prognostic implications of such intratumoral heterogeneity. Thus, we reveal previously unappreciated heterogeneity in diverse regulatory programs central to glioblastoma biology, prognosis, and therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patel, Anoop P -- Tirosh, Itay -- Trombetta, John J -- Shalek, Alex K -- Gillespie, Shawn M -- Wakimoto, Hiroaki -- Cahill, Daniel P -- Nahed, Brian V -- Curry, William T -- Martuza, Robert L -- Louis, David N -- Rozenblatt-Rosen, Orit -- Suva, Mario L -- Regev, Aviv -- Bernstein, Bradley E -- P50 CA165962/CA/NCI NIH HHS/ -- R01 NS032677/NS/NINDS NIH HHS/ -- R25NS065743/NS/NINDS NIH HHS/ -- U24 CA180922/CA/NCI NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1396-401. doi: 10.1126/science.1254257. Epub 2014 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and Massachusetts Institute of Techonology (MIT), Cambridge, MA 02142, USA. Howard Hughes Medical Institute Chevy Chase, MD 20815, USA. ; Broad Institute of Harvard and Massachusetts Institute of Techonology (MIT), Cambridge, MA 02142, USA. ; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and Massachusetts Institute of Techonology (MIT), Cambridge, MA 02142, USA. Howard Hughes Medical Institute Chevy Chase, MD 20815, USA. ; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. ; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. ; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and Massachusetts Institute of Techonology (MIT), Cambridge, MA 02142, USA. bernstein.bradley@mgh.harvard.edu aregev@broadinstitute.org suva.mario@mgh.harvard.edu. ; Broad Institute of Harvard and Massachusetts Institute of Techonology (MIT), Cambridge, MA 02142, USA. Howard Hughes Medical Institute Chevy Chase, MD 20815, USA. Department of Biology, MIT, Cambridge, MA 02139, USA. bernstein.bradley@mgh.harvard.edu aregev@broadinstitute.org suva.mario@mgh.harvard.edu. ; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and Massachusetts Institute of Techonology (MIT), Cambridge, MA 02142, USA. Howard Hughes Medical Institute Chevy Chase, MD 20815, USA. bernstein.bradley@mgh.harvard.edu aregev@broadinstitute.org suva.mario@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24925914" target="_blank"〉PubMed〈/a〉
    Keywords: Brain Neoplasms/classification/drug therapy/*genetics ; Gene Expression Profiling ; *Genetic Variation ; Glioblastoma/classification/drug therapy/*genetics ; Humans ; Prognosis ; RNA, Messenger/*genetics ; Sequence Analysis, RNA/methods ; Single-Cell Analysis/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-29
    Description: To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tirosh, Itay -- Izar, Benjamin -- Prakadan, Sanjay M -- Wadsworth, Marc H 2nd -- Treacy, Daniel -- Trombetta, John J -- Rotem, Asaf -- Rodman, Christopher -- Lian, Christine -- Murphy, George -- Fallahi-Sichani, Mohammad -- Dutton-Regester, Ken -- Lin, Jia-Ren -- Cohen, Ofir -- Shah, Parin -- Lu, Diana -- Genshaft, Alex S -- Hughes, Travis K -- Ziegler, Carly G K -- Kazer, Samuel W -- Gaillard, Aleth -- Kolb, Kellie E -- Villani, Alexandra-Chloe -- Johannessen, Cory M -- Andreev, Aleksandr Y -- Van Allen, Eliezer M -- Bertagnolli, Monica -- Sorger, Peter K -- Sullivan, Ryan J -- Flaherty, Keith T -- Frederick, Dennie T -- Jane-Valbuena, Judit -- Yoon, Charles H -- Rozenblatt-Rosen, Orit -- Shalek, Alex K -- Regev, Aviv -- Garraway, Levi A -- 1U24CA180922/CA/NCI NIH HHS/ -- DP2 OD020839/OD/NIH HHS/ -- K99 CA194163/CA/NCI NIH HHS/ -- K99CA194163/CA/NCI NIH HHS/ -- P01CA163222/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- P50GM107618/GM/NIGMS NIH HHS/ -- R35CA197737/CA/NCI NIH HHS/ -- U54CA112962/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):189-96. doi: 10.1126/science.aad0501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02142, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Program in Therapeutic Sciences, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. ; HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Surgical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Surgical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Program in Therapeutic Sciences, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Ludwig Center at Harvard, Boston, MA 02215, USA. ; Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02142, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Department of Immunology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Biology and Koch Institute, MIT, Boston, MA 02142, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124452" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Communication ; Cell Cycle ; Drug Resistance, Neoplasm/genetics ; Endothelial Cells/pathology ; Genomics ; Humans ; Immunotherapy ; Lymphocyte Activation ; Melanoma/*genetics/*secondary/therapy ; Microphthalmia-Associated Transcription Factor/metabolism ; Neoplasm Metastasis ; RNA/genetics ; Sequence Analysis, RNA ; Single-Cell Analysis ; Skin Neoplasms/*pathology ; Stromal Cells/pathology ; T-Lymphocytes/immunology/pathology ; Transcriptome ; *Tumor Microenvironment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...