ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-10-16
    Description: Asymmetric divisions of radial glia progenitors produce self-renewing radial glia and differentiating cells simultaneously in the ventricular zone (VZ) of the developing neocortex. Whereas differentiating cells leave the VZ to constitute the future neocortex, renewing radial glia progenitors stay in the VZ for subsequent divisions. The differential behaviour of progenitors and their differentiating progeny is essential for neocortical development; however, the mechanisms that ensure these behavioural differences are unclear. Here we show that asymmetric centrosome inheritance regulates the differential behaviour of renewing progenitors and their differentiating progeny in the embryonic mouse neocortex. Centrosome duplication in dividing radial glia progenitors generates a pair of centrosomes with differently aged mother centrioles. During peak phases of neurogenesis, the centrosome retaining the old mother centriole stays in the VZ and is preferentially inherited by radial glia progenitors, whereas the centrosome containing the new mother centriole mostly leaves the VZ and is largely associated with differentiating cells. Removal of ninein, a mature centriole-specific protein, disrupts the asymmetric segregation and inheritance of the centrosome and causes premature depletion of progenitors from the VZ. These results indicate that preferential inheritance of the centrosome with the mature older mother centriole is required for maintaining radial glia progenitors in the developing mammalian neocortex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764320/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764320/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaoqun -- Tsai, Jin-Wu -- Imai, Janice H -- Lian, Wei-Nan -- Vallee, Richard B -- Shi, Song-Hai -- P30 CA008748/CA/NCI NIH HHS/ -- R01 DA024681/DA/NIDA NIH HHS/ -- R01 DA024681-01A1/DA/NIDA NIH HHS/ -- R01 DA024681-02/DA/NIDA NIH HHS/ -- England -- Nature. 2009 Oct 15;461(7266):947-55. doi: 10.1038/nature08435.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Program, Memorial Sloan Kettering Cancer Centre, 1275 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829375" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Binding Proteins/genetics/metabolism ; Cell Aging/physiology ; Cell Differentiation ; *Cell Division ; *Cell Lineage ; Centrioles/physiology ; Centrosome/*physiology ; Chromosomal Proteins, Non-Histone/genetics/metabolism ; Cytoskeletal Proteins/deficiency/genetics/physiology ; Humans ; Mice ; Neocortex/*cytology/embryology ; Neurogenesis/physiology ; Neuroglia/cytology ; Neurons/*cytology ; Nuclear Proteins/deficiency/genetics/physiology ; Stem Cells/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...