ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2014-12-31
    Description: Subsurface pressures strongly influence the migration and trapping of hydrocarbons and impact the safety and efficiency of drilling operations. The pore pressure field of the northern Gulf of Mexico (GOM) was analyzed at 1000-ft (305-m) depth intervals from 2500 to 17,500 ft (762 to 5334 m) below the sea floor. Two variables were mapped: 12,976 initial hydrocarbon reservoir pressure gradient values and 43,276 observations on drilling fluid (mud) weight. Because of the acute importance of assessing estimate uncertainty, ordinary kriging was employed, providing explicit evaluations of confidence surrounding mapped values. Expected values and confidence intervals for the distribution of both variables were estimated by $$9\hbox{ \hspace{0.17em} }\hbox{ \hspace{0.17em} }{\mathrm{mi}}^{2}$$ ( $$23.3\hbox{ \hspace{0.17em} }\hbox{ \hspace{0.17em} }{\mathrm{km}}^{2}$$ ) grid cells across the GOM for each of the 15 depth intervals. Estimation variances were also used to clip each map to specific extents, within which a uniform minimum threshold of certainty was exceeded. Characteristic of young basins with high sedimentation rates, mean pore pressure exceeded hydrostatic pressure throughout the GOM. Four provinces of internally consistent pressure regimes were defined: three south of Louisiana and one off the Texas coast. They reflect geologic controls on pressure arising from regional patterns of sedimentation and the resultant timing and geometry of salt tectonism. One GOM-wide (shallow) vertical transition in the pressure field was found in the mud weight data, and a second vertical transition (deep) occurred in both variables. Hot spot analysis was also applied to identify specific contiguous areas of abnormally high or low rates of change in pressure gradient and mud weight between depth-adjacent intervals.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2015-02-04
    Description: Dual system theories suggest that behavioral control is parsed between a deliberative “model-based” and a more reflexive “model-free” system. A balance of control exerted by these systems is thought to be related to dopamine neurotransmission. However, in the absence of direct measures of human dopamine, it remains unknown whether this...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-09
    Print ISSN: 0742-2091
    Electronic ISSN: 1573-6822
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-10-17
    Description: The role of the world's forests as a "sink" for atmospheric carbon dioxide is the subject of active debate. Long-term monitoring of plots in mature humid tropical forests concentrated in South America revealed that biomass gain by tree growth exceeded losses from tree death in 38 of 50 Neotropical sites. These forest plots have accumulated 0.71 ton, plus or minus 0.34 ton, of carbon per hectare per year in recent decades. The data suggest that Neotropical forests may be a significant carbon sink, reducing the rate of increase in atmospheric carbon dioxide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips -- Malhi -- Higuchi -- Laurance -- Nunez -- Vasquez -- Ferreira -- Stern -- Brown -- Grace -- New York, N.Y. -- Science. 1998 Oct 16;282(5388):439-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉O. L. Phillips, School of Geography, University of Leeds, Leeds, LS2 9JT, UK. Y. Malhi and J. Grace, Institute of Ecology and Resource Management, University of Edinburgh, Edinburgh, EH9 3JU, UK. N. Higuchi, Departamento de Silvicultura Tropical.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9774263" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-09-12
    Description: Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luyssaert, Sebastiaan -- Schulze, E-Detlef -- Borner, Annett -- Knohl, Alexander -- Hessenmoller, Dominik -- Law, Beverly E -- Ciais, Philippe -- Grace, John -- England -- Nature. 2008 Sep 11;455(7210):213-5. doi: 10.1038/nature07276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium. sebastiaan.luyssaert@ua.ac.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18784722" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/chemistry ; Biomass ; Carbon/*metabolism ; Carbon Dioxide/metabolism ; Databases, Factual ; Disasters ; *Ecosystem ; History, 15th Century ; History, 16th Century ; History, 17th Century ; History, 18th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; History, Ancient ; History, Medieval ; Human Activities ; Time Factors ; Trees/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-26
    Description: Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after 〉10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rowland, L -- da Costa, A C L -- Galbraith, D R -- Oliveira, R S -- Binks, O J -- Oliveira, A A R -- Pullen, A M -- Doughty, C E -- Metcalfe, D B -- Vasconcelos, S S -- Ferreira, L V -- Malhi, Y -- Grace, J -- Mencuccini, M -- Meir, P -- England -- Nature. 2015 Dec 3;528(7580):119-22. doi: 10.1038/nature15539. Epub 2015 Nov 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UK. ; Centro de Geosciencias, Universidade Federal do Para, Belem 66075-110, Brazil. ; School of Geography, University of Leeds, Leeds LS2 9JT, UK. ; Instituto de Biologia, UNICAMP, Campinas 13.083-970, Brazil. ; The University of Cambridge, Cambridge CB2 1TN, UK. ; Environmental Change Institute, The University of Oxford, Oxford OX1 3QY, UK. ; Department of Physical Geography and Ecosystem Science, Lund University, Lund S-223 62, Sweden. ; EMBRAPA Amazonia Oriental, Belem 66095-903, Brazil. ; Museu Paraense Emilio Goeldi, Belem 66077-830, Brazil. ; ICREA at CREAF, 08193 Cerdanyola del Valles, Spain. ; Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26595275" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; Body Size ; Brazil ; Carbohydrate Metabolism ; Carbon/*metabolism ; *Droughts ; Plant Leaves/metabolism ; Plant Stems/metabolism ; *Rainforest ; Seasons ; Soil/chemistry ; Trees/growth & development/*metabolism ; *Tropical Climate ; Water/*metabolism ; Xylem/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-07
    Description: Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 +/- 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 +/- 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 +/- 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 +/- 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatti, L V -- Gloor, M -- Miller, J B -- Doughty, C E -- Malhi, Y -- Domingues, L G -- Basso, L S -- Martinewski, A -- Correia, C S C -- Borges, V F -- Freitas, S -- Braz, R -- Anderson, L O -- Rocha, H -- Grace, J -- Phillips, O L -- Lloyd, J -- England -- Nature. 2014 Feb 6;506(7486):76-80. doi: 10.1038/nature12957.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Instituto de Pesquisas Energeticas e Nucleares (IPEN)-Comissao Nacional de Energia Nuclear (CNEN)-Atmospheric Chemistry Laboratory, 2242 Avenida Professor Lineu Prestes, Cidade Universitaria, Sao Paulo CEP 05508-000, Brazil [2]. ; 1] School of Geography, University of Leeds, Woodhouse Lane, Leeds LS9 2JT, UK [2]. ; 1] Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, USA [2] Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, USA [3]. ; Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK. ; Instituto de Pesquisas Energeticas e Nucleares (IPEN)-Comissao Nacional de Energia Nuclear (CNEN)-Atmospheric Chemistry Laboratory, 2242 Avenida Professor Lineu Prestes, Cidade Universitaria, Sao Paulo CEP 05508-000, Brazil. ; Center for Weather Forecasts and Climate Studies, Instituto Nacional de Pesquisas Espaciais (INPE), Rodovia Dutra, km 39, Cachoeira Paulista CEP 12630-000, Brazil. ; 1] Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK [2] Remote Sensing Division, INPE (National Institute for Space Research), 1758 Avenida dos Astronautas, Sao Jose dos Campos CEP 12227-010, Brazil. ; Departamento de Ciencias Atmosfericas/Instituto de Astronomia e Geofisica (IAG)/Universidade de Sao Paulo, 1226 Rua do Matao, Cidade Universitaria, Sao Paulo CEP 05508-090, Brazil. ; Crew Building, The King's Buildings, West Mains Road, Edinburgh EH9 3JN, UK. ; School of Geography, University of Leeds, Woodhouse Lane, Leeds LS9 2JT, UK. ; 1] School of Tropical and Marine Biology and Centre for Terrestrial Environmental and Sustainability Sciences, James Cook University, Cairns 4870, Queensland, Australia [2] Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, Berkshire, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499918" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Biomass ; Biota ; Brazil ; *Carbon Cycle ; Carbon Dioxide/analysis ; Carbon Monoxide/analysis ; Droughts/*statistics & numerical data ; Fires/statistics & numerical data ; Fresh Water/analysis ; Photosynthesis ; Rain ; Seasons ; Trees/metabolism ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...