ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We present the annual patterns of net ecosystem-atmosphere exchange (NEE) of CO2 and H2O observed from a 447 m tall tower sited within a mixed forest in northern Wisconsin, USA. The methodology for determining NEE from eddy-covariance flux measurements at 30, 122 and 396 m above the ground, and from CO2 mixing ratio measurements at 11, 30, 76, 122, 244 and 396 m is described. The annual cycle of CO2 mixing ratio in the atmospheric boundary layer (ABL) is also discussed, and the influences of local NEE and large-scale advection are estimated. During 1997 gross ecosystem productivity (947−18 g C m−2 yr−1), approximately balanced total ecosystem respiration (963±19 g C m−2 yr−1), and NEE of CO2 was close to zero (16±19 g C m−2 yr−1 emitted into the atmosphere). The error bars represent the standard error of the cumulative daily NEE values. Systematic errors are also assessed. The identified systematic uncertainties in NEE of CO2 are less than 60 g C m−2 yr−1. The seasonal pattern of NEE of CO2 was highly correlated with leaf-out and leaf-fall, and soil thaw and freeze, and was similar to purely deciduous forest sites. The mean daily NEE of CO2 during the growing season (June through August) was −1.3 g C m−2 day−1, smaller than has been reported for other deciduous forest sites. NEE of water vapor largely followed the seasonal pattern of NEE of CO2, with a lag in the spring when water vapor fluxes increased before CO2 uptake. In general, the Bowen ratios were high during the dormant seasons and low during the growing season. Evapotranspiration normalized by potential evapotranspiration showed the opposite pattern. The seasonal course of the CO2 mixing ratio in the ABL at the tower led the seasonal pattern of NEE of CO2 in time: in spring, CO2 mixing ratios began to decrease prior to the onset of daily net uptake of CO2 by the forest, and in fall mixing ratios began to increase before the forest became a net source for CO2 to the atmosphere. Transport as well as local NEE of CO2 are shown to be important components of the ABL CO2 budget at all times of the year.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We investigated the interaction of elevated CO2 and/or (Ozone) O3 on the occurrence and severity of aspen leaf rust (Melampsora medusae Thuem. f. sp. tremuloidae) on trembling aspen (Populus tremuloides Michx.). Furthermore, we examined the role of changes in leaf surface properties induced by elevated CO2 and/or O3 in this host–pathogen interaction. Three- to five-fold increases in levels of rust infection index were found in 2 consecutive years following growing-season-long exposures with either O3 alone or CO2 + O3 depending on aspen clone. Examination of leaf surface properties (wax appearance, wax amount, wax chemical composition, leaf surface and wettability) suggested significant effects by O3 and CO2 + O3. We conclude that elevated O3 is altering aspen leaf surfaces in such a way that it is likely predisposing the plants to increased infection by aspen leaf rust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Leaf gas exchange parameters and the content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2-year-old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light-saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age-related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Leaf photosynthesis (Ps), nitrogen (N) and light environment were measured on Populus tremuloides trees in a developing canopy under free-air CO2 enrichment in Wisconsin, USA. After 2 years of growth, the trees averaged 1·5 and 1·6 m tall under ambient and elevated CO2, respectively, at the beginning of the study period in 1999. They grew to 2·6 and 2·9 m, respectively, by the end of the 1999 growing season. Daily integrated photon flux from cloud-free days (PPFDday,sat) around the lowermost branches was 16·8 ± 0·8 and 8·7 ± 0·2% of values at the top for the ambient and elevated CO2 canopies, respectively. Elevated CO2 significantly decreased leaf N on a mass, but not on an area, basis. N per unit leaf area was related linearly to PPFDday,sat throughout the canopies, and elevated CO2 did not affect that relationship. Leaf Ps light-response curves responded differently to elevated CO2, depending upon canopy position. Elevated CO2 increased Pssat only in the upper (unshaded) canopy, whereas characteristics that would favour photosynthesis in shade were unaffected by elevated CO2. Consequently, estimated daily integrated Ps on cloud-free days (Psday,sat) was stimulated by elevated CO2 only in the upper canopy. Psday,sat of the lowermost branches was actually lower with elevated CO2 because of the darker light environment. The lack of CO2 stimulation at the mid- and lower canopy was probably related to significant down-regulation of photosynthetic capacity; there was no down-regulation of Ps in the upper canopy. The relationship between Psday,sat and leaf N indicated that N was not optimally allocated within the canopy in a manner that would maximize whole-canopy Ps or photosynthetic N use efficiency. Elevated CO2 had no effect on the optimization of canopy N allocation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 48 (1980), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Ethylene losses from the gas phase of various container-seal systems were studied to develop acceptable methods for containing ethylene during experiments. Ethylene at an initial amount of 104 μI I-1 was stored in glass vials at near atmospheric pressure for 20 h at 25–27°C and at 35% relative humidity external to the vials. Crimped serum vials sealed with saturated (NH4)2SO4 solution, neoprene rubber septa, nitrile rubber (Hycar) septa, butyl rubber septa, and brown translucent silicone rubber septa lost ethylene at the rate of 1.8, 10.2, 16.2, 16.5, and 40.2 nl m-2s-1, respectively, over the 20-h period. Screw-capped reaction vials sealed with white silicone rubber septa lost ethylene at the rate of 30.2 nl m-2s-1. The (NH4)2SO4 solution was utilized as a seal by inverting a vial so that the salt solution covered the internal surface of the vial septum. Saturated (NH4)2SO4 solution is an effective seal. Silicone rubber should be avoided as a seal in systems for containing ethylene. Ethylene production values in the literature may be underestimates where silicone rubber seals have been used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 103 (1998), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Variable internal plant nutrient content may confound plant response to environmental stress. Plant nutrient content may be controlled with relative addition rate techniques in solution culture. However, because raising large numbers of plants in flowing solution culture is difficult, we investigated the feasibility of raising plants in soil mix using relative fertilizer additions. Aspen (Populus tremuloides Michx.) clones (216, 259 and 271) planted in pots containing a peat, sand and vermiculite (2:1:1, v/v/v) soil mix were grown with exponentially increasing fertilizer concentrations and harvested periodically to assess growth. Addition rate treatments ranged from 0.01 to 0.05 day−1. The lag phase of growth, in which plants adjusted to the fertilizer regime, lasted 40 days after which plants entered the experimental period characterized by constant relative growth rates equivalent to applied fertilizer addition rates. Total plant nutrient concentration was (1) unique for each addition rate, (2) linearly related to addition rate and growth rate, and (3) tended to increase at the highest, and decrease at the lowest addition rates. Regardless, the plants appeared to have attained steady-state conditions. Allocation of carbon to roots increased with lower addition rate treatments and was not dependent upon ontogeny. There were no treatment differences in growth response among aspen clones. Yet there were treatment differences in leaf chlorophyll and photosynthesis within the clones. For the 0.05 day−1 addition rate treatment, chlorophyll, leaf N concentration and photosynthetic rate were strongly correlated with one another, were at a maximum in recently mature leaves, and rapidly declined with leaf age. The rate of decline in these leaf characteristics was slowest in clone 271, consistent with the leaf longevity stress response reported elsewhere. Plant responses from these relative fertilizer addition trials in soil mix agree closely with those run in hydroponics, indicating that steady-state nutrition can be achieved with a technically simple experimental assemblage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 59 (1983), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Seasonal patterns of [14C]-labeled photosynthate distribution within two intensively cultured Populus clones with contrasting phenology (P. tristis × P. balsamifera cv. ‘Tristis no. 1′; P. × euramericana cv. Eugenei) were investigated during the establishment year. During active shoot elongation upper mature leaves exported 14C acropetally to the expanding leaves and elongating internodes, and basipetally to the stem. Little 14C was exported to lower mature leaves or lateral branches. At budset the 14C export pattern shifted dramatically in the basipetal direction, i.e., to the lower stem, hardwood cutting, and roots. The timing of budset was the primary factor determining the differences between the clones, except that in all cases Tristis exported more 14C to the roots than Eugenei. After budset lower mature leaves had a similar export pattern to upper leaves, but the quantity of 14C exported to the roots was slightly higher. The results confirm the importance of autumn foliage for root growth in poplar. Clonal differences in seasonal patterns of photosynthate distribution offer potential for the poplar breeder seeking to match a clone's growth pattern with the specific growing season of the site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Wood science and technology 11 (1977), S. 291-303 
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The physical properties and morphology of kraft paper handsheets obtained from tension wood of intensively managed, 5-year-old trees of Populus “Tristis No. 1” were compared to those produced from isolated normal wood of the same stems. Pulp yields of tension wood (TW) and normal wood (NW) were 60 and 53% respectively. Over a beating range of 0–45 minutes, strength properties of TW paper were in all cases noticeably inferior to those obtained from NW. During paper formation, the TW or gelatinous fibers resisted collapse, even upon extended refining, and produced thick, porous sheets of poorly bonded elements. It was concluded that the differential behavior of NW and TW pulps was in several respects analogous to those displayed by earlywood and latewood pulps, respectively, of softwood species as well as thin-vs. thick-walled hardwood fibers. Consequently, it appears that the inferior strength of TW paper is primarily a function of fiber morphology, and the difference in hemicellulose content between NW and TW (viz., lower pentosan content of TW) often cited in the literature as a potential major factor here probably contributes little if any significant effect on ultimate interfiber bonding and paper quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ability of a developing cottonwood (Populus deltoides Bartr.) leaf to export 14C-labeled assimilates begins at the lamina tip and progresses basipetally with increasing LPI. This progression indicates that portions of leaves function quasi-independently in their ability to export 14C-photosynthate. Although most of the exported radioactivity was recovered in the petiole as water-80% alcohol-soluble compounds, there was also substantial incorporation into the chloroform and insoluble fractions. This observation indicates that assimilates translocated from the lamina are used in structural development of the petiole. Freeze substitution and epoxy embedding were used to prepare microautoradiographs for localization of water-soluble compounds. Radioactivity was found in all cell types within specific subsidiary bundles of the petiole. However, radioactive assimilates appeared to move from the translocation pathway in the phloem toward active sinks in the walls of the expanding metaxylem cells. Translocation in the mature xylem vessels was not observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Wood science and technology 8 (1974), S. 11-26 
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary The transition from primary to secondary stem tissues occurs as a continuum, and a precise anatomical definition of the transition does not exist. A definition was derived for Populus deltoides based on the birefringent properties of the fiber wall. This definition was quantitatively reproducible in the 9 plants tested, and the secondary transition was found to occur in the internode associated with the first mature leaf from the apex. The primary-secondary transition did not occur uniformly around the periphery. It was first observed in the vascular bundles opposite the incoming trace, and from there it progressed in a counter-clockwise direction. Within the transition internode, each vascular bundle and each tissue comprising the bundle differentiated in accord with the physiological age and the phyllotactic disposition of the developing leaf to which it led. Within any one vascular bundle, differentiation occurred first in the metaxylem vessels and associated fibers, followed closely by extension of fibers into the interfascicular regions and centripetal differentiation of the phloem fibers. The ontogenetic sequence of differentiation for each of the principal tissues of the secondary transition zone is described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...