ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-04-25
    Description: Discrepancies between Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR) oceanic rainfall retrievals are prevalent between El Niño and La Niña conditions with TMI exhibiting systematic shifts in precipitation. To investigate the causality of this relationship, this paper focuses on the evolution of precipitation organization between El Niño and La Niña and their impacts on TRMM precipitation. The results indicate that discrepancies are related to shifts from isolated deep convection during La Niña toward organized precipitation during El Niño with the largest variability occurring in the Pacific basins. During El Niño, organized systems are more frequent, have increased areal coverage of stratiform rainfall, and penetrate deeper into the troposphere compared to La Niña. The increased stratiform raining fraction leads to larger increases in TMI rain rates than PR rain rate retrievals. Reanalysis and water vapor data from the Atmospheric Infrared Sounder (AIRS) indicate that organized systems are aided by midtropospheric moisture increases accompanied by increased convective frequency. During La Niña, tropical rainfall is dominated by isolated deep convection due to drier midtropospheric conditions and strong mid- and upper-level zonal wind shear. To examine tropical rainfall–sea surface temperature relations, regime-based bias corrections derived using ground validation (GV) measurements are applied to the TRMM rain estimates. The robust connection with GV-derived biases and oceanic precipitation leads to a reduction in TMI-PR regional differences and tropics-wide precipitation anomalies. The improved agreement between PR and TMI estimates yields positive responses of precipitation to tropical SSTs of 10% °C−1 and 17% °C−1, respectively, consistent with 15% °C−1 from the Global Precipitation Climatology Project (GPCP).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-01
    Description: Over the tropical oceans, large discrepancies in TRMM passive and active microwave rainfall retrievals become apparent during El Niño–Southern Oscillation (ENSO) events. This manuscript describes the application of defined precipitation regimes to aid the validation of instantaneous rain rates from TRMM using the S-band radar located on the Kwajalein Atoll. Through the evaluation of multiple case studies, biases in rain-rate estimates from the TRMM radar (PR) and radiometer (TMI) are best explained when derived as a function of precipitation organization (e.g., isolated vs organized) and precipitation type (convective vs stratiform). When examining biases at a 1° × 1° scale, large underestimates in both TMI and PR rain rates are associated with predominately convective events in deep isolated regimes, where TMI and PR retrievals are underestimated by 37.8% and 23.4%, respectively. Further, a positive bias of 33.4% is observed in TMI rain rates within organized convective systems containing large stratiform regions. These findings were found to be consistent using additional analysis from the DYNAMO field campaign. When validating at the TMI footprint scale, TMI–PR differences are driven by stratiform rainfall variability in organized regimes; TMI overestimates this stratiform precipitation by 92.3%. Discrepancies between TMI and PR during El Niño events are related to a shift toward more organized convective systems and derived TRMM rain-rate bias estimates are able to explain 70% of TMI–PR differences during El Niño periods. An extension of the results to passive microwave retrievals reveals issues in discriminating convective and stratiform rainfall within the TMI field of view (FOV), and significant reductions in bias are found when convective fraction is constrained within the Bayesian retrieval.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-01
    Description: Ground radar rainfall, necessary for satellite rainfall product (e.g., TRMM and GPM) ground validation (GV) studies, is often retrieved using annual or climatological convective/stratiform Z–R relationships. Using the Kwajalein, Republic of the Marshall Islands (RMI), polarimetric S-band weather radar (KPOL) and gauge network during the 2009 and 2011 wet seasons, the robustness of such rain-rate relationships is assessed through comparisons with rainfall retrieved using relationships that vary as a function of precipitation regime, defined as shallow convection, isolated deep convection, and deep organized convection. It is found that the TRMM-GV 2A53 rainfall product underestimated rain gauges by −8.3% in 2009 and −13.1% in 2011, where biases are attributed to rainfall in organized precipitation regimes. To further examine these biases, 2A53 GV rain rates are compared with polarimetrically tuned rain rates, in which GV biases are found to be minimized when rain relationships are developed for each precipitation regime, where, for example, during the 2009 wet-season biases in isolated deep precipitation regimes were reduced from −16.3% to −4.7%. The regime-based improvements also exist when specific convective and stratiform Z–R relationships are developed as a function of precipitation regime, where negative biases in organized convective events (−8.7%) are reduced to −1.6% when a regime-based Z–R is implemented. Negative GV biases during the wet seasons lead to an underestimation in accumulated rainfall when compared with ground gauges, suggesting that satellite-related bias estimates could be underestimated more than originally described. Such results encourage the use of the large-scale precipitation regime along with their respective locally characterized convective or stratiform classes in precipitation validation endeavors and in development of Z–R rainfall relationships.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-01
    Print ISSN: 0034-4257
    Electronic ISSN: 1879-0704
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-24
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-28
    Description: Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W m−2 with an error of approximately ±10 W m−2 that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W m−2 and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W m−2 for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-01
    Description: The launch of CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in 2006 provided the first opportunity to incorporate information about the vertical distribution of cloud and aerosols directly into global estimates of atmospheric radiative heating. Vertical profiles of radar and lidar backscatter from CloudSat’s Cloud Profiling Radar (CPR) and the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard CALIPSO naturally complement Moderate Resolution Imaging Spectroradiometer (MODIS) radiance measurements, providing a nearly complete depiction of the cloud and aerosol properties that are essential for deriving high-vertical-resolution profiles of longwave (LW) and shortwave (SW) radiative fluxes and heating rates throughout the atmosphere. This study describes a new approach for combining vertical cloud and aerosol information from CloudSat and CALIPSO with MODIS data to assess impacts of clouds and aerosols on top-of-atmosphere (TOA) and surface radiative fluxes. The resulting multisensor cloud–aerosol product is used to document seasonal and annual mean distributions of cloud and aerosol forcing globally from June 2006 through April 2011. Direct comparisons with Clouds and the Earth’s Radiant Energy System (CERES) TOA fluxes exhibit a close correlation, with improved errors relative to CloudSat-only products. Sensitivity studies suggest that remaining uncertainties in SW fluxes are dominated by uncertainties in CloudSat liquid water content estimates and that the largest sources of LW flux uncertainty are prescribed surface temperature and lower-tropospheric humidity. Globally and annually averaged net TOA cloud radiative effect is found to be −18.1 W m−2. The global, annual mean aerosol direct radiative effect is found to be −1.6 ± 0.5 W m−2 (−2.5 ± 0.8 W m−2 if only clear skies over the ocean are considered), which, surprisingly, is more consistent with past modeling studies than with observational estimates that were based on passive sensors.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-12-14
    Description: A technique is presented that uses attenuated backscatter profiles from the CALIOP satellite lidar to estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3 km). Even when clouds are thick enough to attenuate the lidar beam (optical thickness τ≳5), the technique provides cloud base heights by treating the cloud base height of nearby thinner clouds as representative of the surrounding cloud field. Using ground-based ceilometer data, uncertainty estimates for the cloud base height product at retrieval resolution are derived as a function of various properties of the CALIOP lidar profiles. Evaluation of the predicted cloud base heights and their predicted uncertainty using a second statistically independent ceilometer dataset shows that cloud base heights and uncertainties are biased by less than 10 %. Geographic distributions of cloud base height and its uncertainty are presented. In some regions, the uncertainty is found to be substantially smaller than the 480 m uncertainty assumed in the A-Train surface downwelling longwave estimate, potentially permitting the most uncertain of the radiative fluxes in the climate system to be better constrained. The cloud base dataset is available at https://doi.org/10.1594/WDCC/CBASE.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-20
    Description: A technique is presented that uses attenuated backscatter profiles from the CALIOP satellite lidar to estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3km). Even when clouds are thick enough to attenuate the lidar beam (optical thickness τ≳5), the technique provides cloud base heights by treating the cloud base height of nearby thinner clouds as representative of the surrounding cloud field. Using ground-based ceilometer data, uncertainty estimates for the cloud base height product at retrieval resolution are derived as a function of various properties of the CALIOP lidar profiles. Evaluation of the predicted cloud base heights and their predicted uncertainty using a second, statistically independent, ceilometer dataset shows that cloud base heights and uncertainties are biased by less than 10%. Geographic distributions of cloud base height and its uncertainty are presented. In some regions, the uncertainty is found to be substantially smaller than the 480m uncertainty assumed in the A-Train surface downwelling longwave estimate, potentially permitting the most uncertain of the radiative fluxes in the climate system to be better constrained. The cloud base dataset is available at https://doi.org/10.1594/WDCC/CBASE.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-26
    Description: The role of clouds in modulating vertically integrated atmospheric heating is investigated using CloudSat’s multisensor radiative flux dataset. On the global mean, clouds are found to induce a net atmospheric heating of 0.07 ± 0.08 K day−1 that derives largely from 0.06 ± 0.07 K day−1 of enhanced shortwave absorption and a small, 0.01 ± 0.04 K day−1 reduction of longwave cooling. However, this small global average longwave effect results from the near cancellation of much larger regional warming by multilayered cloud systems in the tropics and cooling from stratocumulus clouds in subtropical oceans. Clouds are observed to warm the tropical atmosphere by 0.23 K day−1 and cool the polar atmosphere by −0.13 K day−1 enhancing required zonal heat redistribution by the meridional overturning circulation. Zonal asymmetries in the occurrence of multilayered clouds that are more frequent in the Northern Hemisphere and stratocumulus that occur more frequently over the southern oceans also leads to 3 times as much cloud heating in the Northern Hemisphere (0.1 K day−1) than the Southern Hemisphere (0.04 K day−1). These findings suggest that clouds very likely make the strongest contribution to the annual mean atmospheric energy imbalance between the hemispheres (2.0 ± 3.5 PW).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...