ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-06-03
    Description: Ice-nucleating particles (INPs) affect cloud development, lifetime, and radiative properties, hence it is important to know the abundance of INPs throughout the atmosphere. A critical factor in determining the lifetime and transport of INPs is their size; however very little size-resolved atmospheric INP concentration information exists. Here we present the development and application of a radio-controlled payload capable of collecting size-resolved aerosol from a tethered balloon for the primary purpose of offline INP analysis. This payload, known as the SHARK (Selective Height Aerosol Research Kit), consists of two complementary cascade impactors for aerosol size-segregation from 0.25 to 10 µm, with an after-filter and top stage to collect particles below and above this range at flow rates of up to 100 L min−1. The SHARK also contains an optical particle counter to quantify aerosol size distribution between 0.38 and 10 µm, and a radiosonde for the measurement of temperature, pressure, GPS altitude, and relative humidity. This is all housed within a weatherproof box, can be run from batteries for up to 11 h, and has a total weight of 9 kg. The radio control and live data link with the radiosonde allow the user to start and stop sampling depending on meteorological conditions and height, which can, for example, allow the user to avoid sampling in very humid or cloudy air, even when the SHARK is out of sight. While the collected aerosol could, in principle, be studied with an array of analytical techniques, this study demonstrates that the collected aerosol can be analysed with an offline droplet freezing instrument to determine size-resolved INP concentrations, activated fractions, and active site densities, producing similar results to those obtained using a standard PM10 aerosol sampler when summed over the appropriate size range. Test data, where the SHARK was sampling near ground level or suspended from a tethered balloon at 20 m altitude, are presented from four contrasting locations having very different size-resolved INP spectra: Hyytiälä (southern Finland), Leeds (northern England), Longyearbyen (Svalbard), and Cardington (southern England).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-15
    Description: Low concentrations of ice-nucleating particles (INPs) are thought to be important for the properties of mixed-phase clouds, but their detection is challenging. Hence, there is a need for instruments where INP concentrations of less than 0.01 L−1 can be routinely and efficiently determined. The use of larger volumes of suspension in drop assays increases the sensitivity of an experiment to rarer INPs or rarer active sites due to the increase in aerosol or surface area of particulates per droplet. Here we describe and characterise the InfraRed-Nucleation by Immersed Particles Instrument (IR-NIPI), a new immersion freezing assay that makes use of IR emissions to determine the freezing temperature of individual 50 µL droplets each contained in a well of a 96-well plate. Using an IR camera allows the temperature of individual aliquots to be monitored. Freezing temperatures are determined by detecting the sharp rise in well temperature associated with the release of heat caused by freezing. In this paper we first present the calibration of the IR temperature measurement, which makes use of the fact that following ice nucleation aliquots of water warm to the ice–liquid equilibrium temperature (i.e. 0 ∘C when water activity is ∼1), which provides a point of calibration for each individual well in each experiment. We then tested the temperature calibration using ∼100 µm chips of K-feldspar, by immersing these chips in 1 µL droplets on an established cold stage (µL-NIPI) as well as in 50 µL droplets on IR-NIPI; the results were consistent with one another, indicating no bias in the reported freezing temperature. In addition we present measurements of the efficiency of the mineral dust NX-illite and a sample of atmospheric aerosol collected on a filter in the city of Leeds. NX-illite results are consistent with literature data, and the atmospheric INP concentrations were in good agreement with the results from the µL-NIPI instrument. This demonstrates the utility of this approach, which offers a relatively high throughput of sample analysis and access to low INP concentrations.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-09
    Description: Mineral dust particles are thought to be an important type of ice-nucleating particle (INP) in the mixed-phase cloud regime around the globe. While K-rich feldspar (K-feldspar) has been identified as being a particularly important component of mineral dust for ice nucleation, it has been shown that quartz is also relatively ice-nucleation active. Given quartz typically makes up a substantial proportion of atmospheric desert dust, it could potentially be important for cloud glaciation. Here, we survey the ice-nucleating ability of 10 α-quartz samples (the most common quartz polymorph) when immersed in microlitre supercooled water droplets. Despite all samples being α-quartz, the temperature at which they induce freezing varies by around 12 ∘C for a constant active site density. We find that some quartz samples are very sensitive to ageing in both aqueous suspension and air, resulting in a loss of ice-nucleating activity, while other samples are insensitive to exposure to air and water over many months. For example, the ice-nucleation temperatures for one quartz sample shift down by ∼2 ∘C in 1 h and 12 ∘C after 16 months in water. The sensitivity to water and air is perhaps surprising, as quartz is thought of as a chemically resistant mineral, but this observation suggests that the active sites responsible for nucleation are less stable than the bulk of the mineral. We find that the quartz group of minerals is generally less active than K-feldspars by roughly 7 ∘C, although the most active quartz samples are of a similar activity to some K-feldspars with an active site density, ns(T), of 1 cm−2 at −9 ∘C. We also find that the freshly milled quartz samples are generally more active by roughly 5 ∘C than the plagioclase feldspar group of minerals and the albite end member has an intermediate activity. Using both the new and literature data, active site density parameterizations have been proposed for freshly milled quartz, K-feldspar, plagioclase and albite. Combining these parameterizations with the typical atmospheric abundance of each mineral supports previous work that suggests that K-feldspar is the most important ice-nucleating mineral in airborne mineral dust.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-19
    Description: Mineral dust particles from wind-blown soils are known to act as effective ice nucleating particles in the atmosphere and are thought to play an important role in the glaciation of mixed phase clouds. Recent work suggests that feldspars are the most efficient nucleators of the minerals commonly present in atmospheric mineral dust. However, the feldspar group of minerals is complex, encompassing a range of chemical compositions and crystal structures. To further investigate the ice-nucleating properties of the feldspar group we measured the ice nucleation activities of 15 well-characterised feldspar samples. We show that alkali feldspars, in particular the potassium feldspars, generally nucleate ice more efficiently than feldspars containing significant amounts of calcium in the plagioclase series. We also find that there is variability in ice nucleating ability within these groups. While five out of six potassium-rich feldspars have a similar ice nucleating ability, one potassium rich feldspar sample and one sodium-rich feldspar sample were significantly more active. The hyper-active Na-feldspar was found to lose activity with time suspended in water with a decrease in mean freezing temperature of about 16 °C over 16 months; the mean freezing temperature of the hyper-active K-feldspar decreased by 2 °C over 16 months, whereas the ‘standard’ K-feldspar did not change activity within the uncertainty of the experiment. These results, in combination with a review of the available literature data, are consistent with the previous findings that potassium feldspars are important components of soil dusts for ice nucleation. However, we also show that there is the possibility that some alkali feldspars can have enhanced ice nucleating abilities, which could have implications for prediction of ice nucleating particle concentrations in the atmosphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-04-12
    Description: Mineral dust particles are thought to be an important type of ice-nucleating particle (INP) in the mixed-phase cloud regime around the globe. While K-feldspar has been identified as being a particularly important component of mineral dust for ice nucleation, it has been shown that quartz is also relatively ice nucleation active. Given quartz typically makes up a substantial proportion of atmospheric desert dust it could potentially be important for cloud glaciation. Here, we survey the ice-nucleating ability of 10 α-quartz samples (the most common quartz polymorph) when immersed in microlitre supercooled water droplets. Despite all samples being α-quartz, the temperature at which they induce freezing varies by around 12 °C for a constant active site density. We find that some quartz samples are very sensitive to ageing in both aqueous suspension and air, resulting in a loss of ice-nucleating activity, while other samples are insensitive to exposure to air and water over many months. The sensitivity to water and air is perhaps surprising as quartz is thought of as a chemically resistant material, but this observation suggests that the active sites responsible for nucleation are less stable than the bulk of the material. We find that the quartz group of minerals are generally less active than K-feldspars, although the most active quartz samples are of a similar activity to some K-feldspars. We also find that the quartz samples are generally more active than the plagioclase feldspar group of minerals and the albite end-member has an intermediate activity. Using both the new and literature data, active site density parameterisations have been proposed for quartz, K-feldspar, plagioclase and albite. Combining these parameterisations with the typical atmospheric abundance of each mineral and comparing the results with atmospheric ice-nucleating particle concentrations, supports previous work that suggests that K-feldspar dominates, rather than quartz (or other minerals), the ice nucleation particle population in desert dust aerosol.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-13
    Description: Low concentrations of ice nucleating particles (INPs) are thought to be important for the properties of mixed-phase clouds, but their detection is challenging. While instruments to quantify INPs online can provide relatively high time resolution data, they typically cannot quantify very low INP concentrations. Furthermore, typical online instruments tend to report data at a single defined set of conditions. Hence, there is a need for instruments where INP concentrations of less than 0.01L−1 can be routinely and efficiently determined. The use of larger volumes of suspension in drop assays increases the sensitivity of an experiment to rarer INPs or rarer active sites due to the increase in aerosol or surface area of particulates per droplet. Here we describe and characterise the InfraRed-Nucleation by Immersed Particles Instrument (IR-NIPI), a new immersion freezing assay that makes use of IR emissions to determine the freezing temperature of individual 50μL droplets each contained in a well of a 96-well plate. Using an IR camera allows the temperature of individual aliquots to be monitored. Freezing temperatures are determined by detecting the sharp rise in well temperature associated with the release of latent the release of heat caused by freezing. In this paper we first present the calibration of the IR temperature measurement, which makes use of the freezing period after initial nucleation when wells warm and their temperature is determined by the ice-liquid equilibrium temperature, i.e. 0°C when the water activity is ~1. We then tested the temperature calibration using ~100µm chips of K-feldspar, by immersing these chips in 1µL droplets on an established cold stage (µL-NIPI) as well as in 50µL droplets on IR-NIPI; the results were consistent with one another indicating no bias in the reported freezing temperature. In addition we present measurements of the efficiency of the mineral dust NX-illite and a sample of atmospheric aerosol collected on a filter in the city of Leeds. NX-illite results are consistent with literature data and the atmospheric INP concentrations were in good agreement with the results from the µL-NIPI instrument. This demonstrates the utility of this approach, which offers a relatively high throughput of sample analysis and access to low INP concentrations.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-05
    Description: Mineral dust particles from wind-blown soils are known to act as effective ice nucleating particles in the atmosphere and are thought to play an important role in the glaciation of mixed phase clouds. Recent work suggests that feldspars are the most efficient nucleators of the minerals commonly present in atmospheric mineral dust. However, the feldspar group of minerals is complex, encompassing a range of chemical compositions and crystal structures. To further investigate the ice-nucleating properties of the feldspar group we measured the ice nucleation activities of 15 characterized feldspar samples. We show that alkali feldspars, in particular the potassium feldspars, generally nucleate ice more efficiently than feldspars in the plagioclase series which contain significant amounts of calcium. We also find that there is variability in ice nucleating ability within these groups. While five out of six potassium-rich feldspars have a similar ice nucleating ability, one potassium rich feldspar sample and one sodium-rich feldspar sample were significantly more active. The hyper-active Na-feldspar was found to lose activity with time suspended in water with a decrease in mean freezing temperature of about 16 °C over 16 months; the mean freezing temperature of the hyper-active K-feldspar decreased by 2 °C over 16 months, whereas the "standard" K-feldspar did not change activity within the uncertainty of the experiment. These results, in combination with a review of the available literature data, are consistent with the previous findings that potassium feldspars are important components of arid or fertile soil dusts for ice nucleation. However, we also show that there is the possibility that some alkali feldspars may have enhanced ice nucleating abilities, which could have implications for prediction of ice nucleating particle concentrations in the atmosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...