ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Recent developments in ocular implant technology require the in vitro evaluation of ocular compatibility in early stage development programs. This requires an understanding and appreciation of the biological interactions which occur in the ocular environment and their relevance with respect to the clinical complications associated with surgical implantation of devices. This paper describes the development of a series of clinically reflective in vitro assays for assessing the potential ocular compatibility of novel intraocular lens materials. Staphylococcus epidermidis attachment, fibrinogen adsorption, mouse embryo fibroblast 3T3 adhesion and proliferation, primary rabbit lens cell adhesion, human peripheral blood macrophage adhesion and granulocyte activation tests were employed to evaluate two widely used intraocular biomaterials poly(methyl methacrylate) (PMMA) and silicone, and a novel biomimetic phosphorylcholine-based coating (PC). The performance of these materials in the in vitro assays was compared to their ability to reduce postoperative inflammation in vivo in a rabbit model. The results demonstrated that the in vitro assays described here are predictive of in vivo ocular compatibility. These assays offer a more relevant means of assessing the ocular compatibility of biomaterials than those presently required by the authorities for regulatory approval of medical devices and implants. © 1999 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 10 (1998), S. 528-534 
    ISSN: 0899-0042
    Keywords: chiral inversion ; ibuprofen ; ketoprofen ; flurbiprofen ; indoprofen ; suprofen ; fenoprofen ; metabolism of 2-arylpropionic acids ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The fungus Cordyceps militaris has been previously shown to be capable of inverting the chirality of 2-phenylpropionic acid from its (R)-enantiomer to its (S)-antipode. The structure of this compound is similar to the 2-arylpropionic acid non-steroidal anti-inflammatory drugs, which have also been reported to undergo a similar chiral inversion process in mammals and man. We report here an investigation into the substrate specificity of the enzyme system present in C. militaris using pure enantiomers and racemates of ibuprofen and ketoprofen and racemates of indoprofen, suprofen, flurbiprofen, and fenoprofen and the structurally related compounds 2-phenylbutyric acid and 2-phenoxypropionic acid as substrates, using optimised incubation conditions developed for the inversion of 2-phenylpropionic acid. The results demonstrated that C. militaris is capable of inverting the chirality of all the compounds investigated, which suggests that the active sites of the enzymes are very flexible with regard to the molecular dimensions of the substrate molecule and the spatial occupation of the groups surrounding the chiral centre. Metabolism of all the substrates was observed but the rate of metabolism varied extensively depending on the substrate. Achiral HPLC analysis was used to detect any potential metabolites and the results suggested that the site of the metabolism appeared to be at the aliphatic side groups only, with the aromatic ring being left intact in all cases. These results suggest that C. militaris could be a valuable tool in the investigation of the prospective metabolic fates of new 2-arylpropionic acids during their development. Chirality 10:528-534, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0899-0042
    Keywords: microbial chiral inversion ; 2-phenylpropionic acid ; kinetic isotope effect ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Previous investigations have described the development of nongrowing suspension of Verticillium lecanii as a microbial model of the mammalian chiral inversion of the 2-arylpropionic acids (2-APAs). Mechanistic studies in mammals have shown that inversion involves loss of the α-methine proton but retention of the original atoms at the β-methyl position, and a mechanism has been proposed involving enzymatic epimerisation of acyl-CoA thioester derivatives of the substrate. Inversion of the 2-APAs by V. lecanii exhibits extensive intersubstrate variation in the presence, rate, extent, and direction of inversion, which are different from those observed in mammalian systems, possibly indicating differences in the mechanism of inversion between mammalian and microbial cells. This study involved the investigation of proton/deuterium exchange by 1H-nuclear magnetic resonance following incubation of deuterated derivatives of 2-phenylpropionic acid (2-PPA), a model compound, in cell suspensions of V. lecanii and incubation of undeuterated 2-PPA in cell suspensions containing D2O. The results indicated that the inversion of 2-PPA by V. lecanii also involved exchange of the α-methine proton but complete retention on the original atoms at the β-methyl position. No kinetic deuterium isotope effect was observed, indicating that loss of the α-methine proton is not the rate-limiting step of the inversion process. This suggests that the observed differences between microbial and mammalian systems probably involve the stereoselective acyl-CoA thioester formation step and not the subsequent epimerisation of the resultant diastereomers. Chirality 9:254-260, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-01-01
    Print ISSN: 0899-0042
    Electronic ISSN: 1520-636X
    Topics: Chemistry and Pharmacology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-01-01
    Print ISSN: 0899-0042
    Electronic ISSN: 1520-636X
    Topics: Chemistry and Pharmacology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...