ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Call number: MOP B 17467
    In: The Institute of Mathematics and its applications conference series : N.S.
    Type of Medium: Monograph available for loan
    Pages: XVI, 500 S.: graph. Darst.
    Series Statement: The Institute of Mathematics and its applications conference series : N.S.
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Description / Table of Contents: The introduction of the term periglacial by Łoziński in 1909 to describe the cold-climate conditions in the zone adjacent to, but beyond, the Pleistocene glaciers encouraged the separate development of geocryological and glaciological research. Geological and geomorphological processes at the interface between glaciers and permafrost have, as a result, been given less attention than they warrant, and the influence of one on the other has in many respects been neglected. This book includes a collection of papers that emphasize glacier-permafrost interactions. Papers consider permafrost and its influence on glacitectonic processes, glacial meltwater systems and ground-ice development in proglacial and ice-marginal environments. In addition, recent research findings are reported on paraglacial processes, permafrost evolution, rock glaciers, the formation of ice-wedge casts and periglacial slope evolution. It is hoped that this book will stimulate interest in the interface between glacial and periglacial systems, and encourage further collaborative research involving glaciologists and glacial geologists on the one hand, and geocryologists and permafrost scientists on the other.
    Pages: Online-Ressource (VII, 161 Seiten)
    ISBN: 1862391750
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-02
    Description: In September 2019, the research icebreaker Polarstern started the largest multidisciplinary Arctic expedition to date, the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. Being moored to an ice floe for a whole year, thus including the winter season, the declared goal of the expedition is to better understand and quantify relevant processes within the atmosphere–ice–ocean system that impact the sea ice mass and energy budget, ultimately leading to much improved climate models. Satellite observations, atmospheric reanalysis data, and readings from a nearby meteorological station indicate that the interplay of high ice export in late winter and exceptionally high air temperatures resulted in the longest ice-free summer period since reliable instrumental records began. We show, using a Lagrangian tracking tool and a thermodynamic sea ice model, that the MOSAiC floe carrying the Central Observatory (CO) formed in a polynya event north of the New Siberian Islands at the beginning of December 2018. The results further indicate that sea ice in the vicinity of the CO (〈40 km distance) was younger and 36 % thinner than the surrounding ice with potential consequences for ice dynamics and momentum and heat transfer between ocean and atmosphere. Sea ice surveys carried out on various reference floes in autumn 2019 verify this gradient in ice thickness, and sediments discovered in ice cores (so-called dirty sea ice) around the CO confirm contact with shallow waters in an early phase of growth, consistent with the tracking analysis. Since less and less ice from the Siberian shelves survives its first summer (Krumpen et al., 2019), the MOSAiC experiment provides the unique opportunity to study the role of sea ice as a transport medium for gases, macronutrients, iron, organic matter, sediments and pollutants from shelf areas to the central Arctic Ocean and beyond. Compared to data for the past 26 years, the sea ice encountered at the end of September 2019 can already be classified as exceptionally thin, and further predicted changes towards a seasonally ice-free ocean will likely cut off the long-range transport of ice-rafted materials by the Transpolar Drift in the future. A reduced long-range transport of sea ice would have strong implications for the redistribution of biogeochemical matter in the central Arctic Ocean, with consequences for the balance of climate-relevant trace gases, primary production and biodiversity in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-08
    Description: In September 2019, the research icebreaker Polarstern started the largest multidisciplinary Arctic expedition to date, the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. Being moored to an ice floe for a whole year, thus including the winter season, the declared goal of the expedition is to better understand and quantify relevant processes within the atmosphere–ice–ocean system that impact the sea ice mass and energy budget, ultimately leading to much improved climate models. Satellite observations, atmospheric reanalysis data, and readings from a nearby meteorological station indicate that the interplay of high ice export in late winter and exceptionally high air temperatures resulted in the longest ice-free summer period since reliable instrumental records began. We show, using a Lagrangian tracking tool and a thermodynamic sea ice model, that the MOSAiC floe carrying the Central Observatory (CO) formed in a polynya event north of the New Siberian Islands at the beginning of December 2018. The results further indicate that sea ice in the vicinity of the CO (〈40 km distance) was younger and 36 % thinner than the surrounding ice with potential consequences for ice dynamics and momentum and heat transfer between ocean and atmosphere. Sea ice surveys carried out on various reference floes in autumn 2019 verify this gradient in ice thickness, and sediments discovered in ice cores (so-called dirty sea ice) around the CO confirm contact with shallow waters in an early phase of growth, consistent with the tracking analysis. Since less and less ice from the Siberian shelves survives its first summer (Krumpen et al., 2019), the MOSAiC experiment provides the unique opportunity to study the role of sea ice as a transport medium for gases, macronutrients, iron, organic matter, sediments and pollutants from shelf areas to the central Arctic Ocean and beyond. Compared to data for the past 26 years, the sea ice encountered at the end of September 2019 can already be classified as exceptionally thin, and further predicted changes towards a seasonally ice-free ocean will likely cut off the long-range transport of ice-rafted materials by the Transpolar Drift in the future. A reduced long-range transport of sea ice would have strong implications for the redistribution of biogeochemical matter in the central Arctic Ocean, with consequences for the balance of climate-relevant trace gases, primary production and biodiversity in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 88 (1984), S. 4200-4209 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 5586-5591 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A simple, classical stochastic model has been developed to study the vibrational energy relaxation of heteronuclear diatomic molecules in simple monatomic liquids. This work is an extension of an earlier study on homonuclear diatomic molecules [D. E. Smith and C. B. Harris, J. Chem. Phys. 92, 1312 (1990)]. The model is based on the generalized Langevin equation for generalized Brownian dynamics. The memory function of each atom in the diatomic is determined directly from classical molecular dynamics simulations in the solvent of interest and then scaled by a screening factor. The memory function is modeled using an autoregressive technique, which provides efficient evaluation of the friction integral. The effect of screening is accounted using a simple model based on the equilibrium structure of the diatomic in the Lennard-Jones solvent, which is shown to provide very reasonable results. The model developed is applied to simulate the vibrational relaxation of iodine chloride, ICl, in its ground electronic state in liquid xenon. Good agreement is found between the stochastic and molecular dynamics simulations. This is encouraging considering the fact that the stochastic technique is computationally more efficient and has been generalized from homonuclear to heteronuclear diatomics. It also indicates that the underlying assumptions, such as the linear response approximation, are valid in the present stochastic model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 3712-3713 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The X state vibrational relaxation of geminately recombined I2 in liquid Xe is monitored as a function of solvent density by means of transient absorption spectroscopy. Plots of vibrational energy vs time at different solvent density can be exactly overlapped by linearly scaling the time axis. This linear scaling behavior indicates that the isolated binary collision (IBC) model's assumption regarding the density independence of the probability of relaxation per collision is valid at liquid densities, even for a low frequency oscillator (≈200 cm−1). This new method of testing the IBC model's validity at liquid density is independent of the explicit form of the intermolecular potential and is independent of a determination of collision frequency and thus, eliminates the ambiguities associated with evaluating this quantity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 1304-1311 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A method is presented for numerical integration of the generalized Langevin equation (GLE) based on modeling of the "random force'' as a discrete autoregressive process. This modeling procedure, drawn from digital signal processing and spectral estimation methods which have been used extensively in electrical engineering applications, provides for efficient evaluation of the friction integral in the GLE as well as for generation of a random force process with the desired spectrum. The method is shown, through comparison with molecular dynamics results, to be effective in simulating the force autocorrelation function of an iodine atom dissolved in Lennard-Jones (LJ) xenon. In a companion paper this method is applied in a simulation of the vibrational relaxation of I2 in LJ xenon at two very different densities and found to perform well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 1481-1483 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The A'/A state lifetime of I2 in various deuterated hydrocarbon solvents has been determined from picosecond transient absorption spectra. The lifetime observed in the deuterated solvents is 2.0 times as long as that which has been measured in the corresponding undeuterated solvent. A mechanism involving intermolecular electronic to vibration energy transfer from the electronically excited I2 to the solvent is proposed to explain this effect and the overall trend of shorter lifetime with increasing density of CH stretching modes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 1312-1319 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A simple classical stochastic model for diatomic vibrational relaxation, based on the generalized Langevin equation, is presented. The memory function in the generalized Langevin equation is determined directly from equilibrium force autocorrelation functions for the individual atoms of the diatomic dissolved in the solvent of interest. A simple autoregressive (AR) procedure, developed in a preceding paper [D. E. Smith and C. B. Harris, J. Chem. Phys. 92, xxx (1990)], is used for modeling the memory functions to arbitrary order. This model is tested on the system of iodine in Lennard–Jones xenon using fourth order AR approximations for the memory functions, and is found to be very effective in reproducing data from molecular dynamics simulations at two very different densities. Results are discussed in terms of the simplifying assumption that the solvent interaction with the diatomic can be characterized by equilibrium dynamics of single atoms in solution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...