ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Description / Table of Contents: This special issue of Pure and Applied Geophysics is the second of two volumes containing an augmented collection of papers originating from the Evison Symposium on Seismogenesis and Earthquake Forecasting held in Wellington, New Zealand, in February 2008. The volumes honor Frank Evison's interest in earthquake generation and forecasting. This volume includes descriptions of earthquake forecasting test centers through the Collaboratory for the Study of Earthquake Predictability (CSEP) program and the first results from the Regional Earthquake Likelihood Model (RELM) experiment in California. Other papers discuss methods of testing predictions, in particular by the use of error diagrams. There is discussion of prediction methodologies using seismicity, including an application of the statistical technique of Hidden Markov Models to identify changes in seismicity and a new technique for identifying precursory quiescence. Several papers employ other data besides seismicity, such as geologically determined faults, calculations of stress changes via Coulomb stress modeling, tomographically determined velocity structure, groundwater, crustal deformation, and comparisons of real earthquakes to synthetic seismicity determined from hypothesized earthquake physics. One paper focuses on the prediction of human casualties in the event that a large earthquake occurs anywhere on the globe. The volume will be useful to students and professional researchers who are interested in the earthquake preparation process and in converting that understanding into forecasts of earthquake occurrence.
    Pages: Online-Ressource (274 Seiten)
    ISBN: 9783034604994
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Description / Table of Contents: This special issue of Pure and Applied Geophysics is one of two volumes containing an augmented collection of papers originating from the Evison Symposium on Seismogenesis and Earthquake Forecasting held in Wellington, New Zealand, in February 2008. The volumes honor Frank Evison's interest in earthquake generation and forecasting. A biography of Frank Evison and a list of his publications is included, as well as review papers and new research papers in the field. The volume includes papers related to Frank's most abiding interest of precursory earthquake swarms. The research contributions cover a range of current forecasting methods such as the Epidemic-Type Aftershock model, the Every Earthquake a precursor According to Scale model, Pattern Informatics, Reverse Tracing of Precursors, stochastic models of elastic rebound, and methods for handling multiple precursors. The methods considered employ a variety of statistical approaches to using previous seismicity to forecast future earthquakes, including regional and global earthquake likelihood models and alarm-type forecasts. The forecast time-frames of interest range from the short time-frame associated with clustering of aftershocks to the long time-frame associated with recurrence of major earthquakes. A recurring theme is the assessment of forecasting performance, whether by likelihood scores, skill scores, error diagrams, or relative operating characteristic tests. The volume will be useful to students and professional researchers who are interested in the earthquake preparation process and in converting that understanding into forecasts of earthquake occurrence.
    Pages: Online-Ressource (250 Seiten)
    ISBN: 9783034604970
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 41 (1985), S. 579-581 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈span〉〈div〉ABSTRACT〈/div〉This article presents modified Mercalli intensity (MMI) data for the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake. These data include intensity levels above MMI 8 that have not been assigned previously. Two sources of data have been used in this research: GeoNet’s “Felt Classic” online questionnaires and felt reports gathered during a field study in Christchurch in February 2013. Taken together, these sets of data provided 331 valid (i.e., with all the needed information) felt reports in areas of MMI 8 or above, with 299 (90%) of the reports used to assign MMI levels above 8.This article presents a more detailed picture of the geographical damage distribution of this earthquake than has previously been available. The data differentiate damage in the center of Christchurch, with 8 communities assigned a community MMI (CMMI) of 9, 11 communities a CMMI of 10, and 8 communities a CMMI of 11, which is the maximum possible intensity in the New Zealand MMI scale, and a level of intensity not previously reported in New Zealand (〈a href="https://pubs.geoscienceworld.org/srl#rf6"〉Dowrick 〈span〉et al.〈/span〉, 2008〈/a〉).The geographical damage distribution for Christchurch has been updated for intensities below MMI 8. This was done using a recently developed method that groups intensity data and allows intensities to be aggregated for a community and a single value assigned. Comparisons between MMI and peak ground velocity using the CMMI data and two ground‐motion intensity correlation equations (GMICEs) indicate an underestimation of MMI when using the GMICEs and the need to review New Zealand’s GMICE.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-05
    Description: The Regional Earthquake Likelihood Models experiment in California tested the performance of earthquake likelihood models over a five-year period. First-order analysis showed a smoothed-seismicity model by Helmstetter et al. (2007) to be the best model. We construct optimal multiplicative hybrids involving the best individual model as a baseline and one or more conjugate models. Conjugate models are transformed using an order-preserving function. Two parameters for each conjugate model and an overall normalizing constant are fitted to optimize the hybrid model. Many two-model hybrids have an appreciable information gain (log probability gain) per earthquake relative to the best individual model. For the whole of California, the Bird and Liu (2007) Neokinema and Holliday et al. (2007) pattern informatics (PI) models both give gains close to 0.25. For southern California, the Shen et al. (2007) geodetic model gives a gain of more than 0.5, and several others give gains of about 0.2. The best three-model hybrid for the whole region has the Neokinema and PI models as conjugates. The best three-model hybrid for southern California has the Shen et al. (2007) and PI models as conjugates. The information gains of the best multiplicative hybrids are greater than those of additive hybrids constructed from the same set of models. The gains tend to be larger when the contributing models involve markedly different concepts or data. These results need to be confirmed by further prospective tests. Multiplicative hybrids will be useful for assimilating other earthquake-related observations into forecasting models and for combining forecasting models at all timescales.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-27
    Description: The Canterbury, New Zealand, earthquake sequence, which began in September 2010, occurred in a region of low crustal deformation and previously low seismicity. Because, the ensuing seismicity in the region is likely to remain above previous levels for many years, a hybrid operational earthquake forecasting model for Canterbury was developed to inform decisions on building standards and urban planning for the rebuilding of Christchurch. The model estimates occurrence probabilities for magnitudes M ≥ 5.0 in the Canterbury region for each of the next 50 yr. It combines two short-term, two medium-term and four long-term forecasting models. The weight accorded to each individual model in the operational hybrid was determined by an expert elicitation process. A retrospective test of the operational hybrid model and of an earlier informally developed hybrid model in the whole New Zealand region has been carried out. The individual and hybrid models were installed in the New Zealand Earthquake Forecast Testing Centre and used to make retrospective annual forecasts of earthquakes with magnitude M 〉 4.95 from 1986 on, for time-lags up to 25 yr. All models underpredict the number of earthquakes due to an abnormally large number of earthquakes in the testing period since 2008 compared to those in the learning period. However, the operational hybrid model is more informative than any of the individual time-varying models for nearly all time-lags. Its information gain relative to a reference model of least information decreases as the time-lag increases to become zero at a time-lag of about 20 yr. An optimal hybrid model with the same mathematical form as the operational hybrid model was computed for each time-lag from the 26-yr test period. The time-varying component of the optimal hybrid is dominated by the medium-term models for time-lags up to 12 yr and has hardly any impact on the optimal hybrid model for greater time-lags. The optimal hybrid model is considerably more informative than the operational hybrid model at long time-lags, but less so when the period of the Canterbury earthquakes is excluded from the tests. The results highlight the value of including medium-term models and a range of long-term models in operational forecasting. Based on the tests carried out here, the operational hybrid model is expected to outperform most of the individual models in the next 25 yr.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-02
    Description: Potential earthquake sources are revealed by the locations of earthquakes in historical and instrumental catalogs and of geologically mapped faults, including plate boundaries. We derive a set of multiplicative hybrid earthquake likelihood models that combine earthquake and fault data for the New Zealand region. In these models, the cell rates in a spatially uniform baseline model are scaled using selected subsets of five covariates derived from the magnitudes and locations of past earthquakes, the location of the boundary between the Australian and Pacific plates, and the location and slip rate of mapped faults. The hybrid model parameters are optimized for earthquakes of M  5 and greater over the period 1987–2006 and tested on earthquakes from the period 2007–2014. No updating of models is undertaken during the fitting or testing period, but we consider two cases of the earthquake-based covariates in the tests: (1) all data prior to 1987 and (2) all data prior to 2007, respectively. Hybrids containing the earthquake-based covariates perform better in the latter case. The most informative hybrid models in the fitting and testing period are composed of three and four covariates, respectively, including both earthquake- and fault-based variables. Proximity to mapped faults is overall the most informative individual covariate. These results can be used to inform better modeling of long-term earthquake occurrence rates for probabilistic seismic-hazard analysis.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-01
    Description: An earthquake of Mw 6.1–6.31 (Beavan et al. 2011, page 789 of this issue) that struck Christchurch, New Zealand, on 22 February (21 February, UTC) produced recorded ground motion acceleration over 2 g. The event caused widespread damage with dense recordings of non-linear site behavior. Globally, dense near-field recordings of shallow intraplate earthquakes are rare. It is possible that extreme ground motions are common with this type of earthquake and that their rarity is merely a function of inadequate seismic sampling in the near field of such low-probability, high-potency events. To better define the nature of these events, we calculate apparent stress (ta) of the three largest earthquakes in the Canterbury sequence and compare them to global and regional data. We then place recorded PGA and spectral accelerations into the context of regional and global ground motion prediction equations and discuss the implications of high-stress events for future seismic hazard estimates for the region. For the February event, we also briefly explore the implications of directivity on measured ground motions in central Christchurch. The earthquakes that occurred in the Canterbury region of the South Island, New Zealand, from September 2010 to the present have disproportionately large energy magnitudes (Me) to their moment magnitudes (Mw). They have produced the largest ground motions ever measured in New Zealand. The sequence began with the Mw 7.1 earthquake that occurred about 40 km west of the city of Christchurch on 4 September 2010. The maximum recorded ground acceleration recorded during the event was over 1.25 g, which was experienced near the intersection of the triggering thrust on which the rupture began and the strike-slip Greendale fault that carried most of the moment in the earthquake (Gledhill et al. 2010). Peak ground accelerations (PGA) in the central business district of Christchurch averaged...
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-01
    Description: We use a database of approximately 200,000 modified Mercalli intensity (MMI) observations of California earthquakes collected from USGS “Did You Feel It?” (DYFI) reports, along with a comparable number of peak ground-motion amplitudes from California seismic networks, to develop probabilistic relationships between MMI and peak ground velocity (PGV), peak ground acceleration (PGA), and 0.3-s, 1-s, and 3-s 5% damped pseudospectral acceleration (PSA). After associating each ground-motion observation with an MMI computed from all the DYFI responses within 2 km of the observation, we derived a joint probability distribution between MMI and ground motion. We then derived reversible relationships between MMI and each ground-motion parameter by using a total least squares regression to fit a bilinear function to the median of the stacked probability distributions. Among the relationships, the fit to peak ground velocity has the smallest errors, though linear combinations of PGA and PGV give nominally better results. We also find that magnitude and distance terms reduce the overall residuals and are justifiable on an information theoretic basis. For intensities MMI=5, our results are in close agreement with the relations of Wald, Quitoriano, Heaton, and Kanamori (1999); for lower intensities, our results fall midway between Wald, Quitoriano, Heaton, and Kanamori (1999) and those of Atkinson and Kaka (2007). The earthquakes in the study ranged in magnitude from 3.0 to 7.3, and the distances ranged from less than a kilometer to about 400 km from the source.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-11
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...