ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-28
    Description: Negative carbon isotope anomalies in carbonate rocks bracketing Neoproterozoic glacial deposits in Namibia, combined with estimates of thermal subsidence history, suggest that biological productivity in the surface ocean collapsed for millions of years. This collapse can be explained by a global glaciation (that is, a snowball Earth), which ended abruptly when subaerial volcanic outgassing raised atmospheric carbon dioxide to about 350 times the modern level. The rapid termination would have resulted in a warming of the snowball Earth to extreme greenhouse conditions. The transfer of atmospheric carbon dioxide to the ocean would result in the rapid precipitation of calcium carbonate in warm surface waters, producing the cap carbonate rocks observed globally.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman -- Kaufman -- Halverson -- Schrag -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1342-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉P. F. Hoffman, G. P. Halverson, D. P. Schrag, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA. A. J. Kaufman, Department of Geology, University of Maryland, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721097" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-24
    Description: Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sperling, Erik A -- Wolock, Charles J -- Morgan, Alex S -- Gill, Benjamin C -- Kunzmann, Marcus -- Halverson, Galen P -- Macdonald, Francis A -- Knoll, Andrew H -- Johnston, David T -- England -- Nature. 2015 Jul 23;523(7561):451-4. doi: 10.1038/nature14589.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California 90089, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA. ; Department of Earth and Planetary Sciences/GEOTOP, McGill University, Montreal, Quebec, H3A 0E8, Canada. ; 1] Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201598" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/chemistry ; Biodiversity ; Geologic Sediments/chemistry ; History, Ancient ; Iron/*analysis/*chemistry ; Oceans and Seas ; Oxidation-Reduction ; Oxygen/*analysis/*chemistry/metabolism ; Seawater/chemistry ; Sulfides/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-01
    Description: Global carbon cycle perturbations throughout Earth history are frequently linked to changing paleogeography, glaciation, ocean oxygenation, and biological innovation. A pronounced carbonate carbon-isotope excursion during the Ediacaran Period (635 to 542 million years ago), accompanied by invariant or decoupled organic carbon-isotope values, has been explained with a model that relies on a large oceanic reservoir of organic carbon. We present carbonate and organic matter carbon-isotope data that demonstrate no decoupling from approximately 820 to 760 million years ago and complete decoupling between the Sturtian and Marinoan glacial events of the Cryogenian Period (approximately 720 to 635 million years ago). Growth of the organic carbon pool may be related to iron-rich and sulfate-poor deep-ocean conditions facilitated by an increase in the Fe:S ratio of the riverine flux after Sturtian glacial removal of a long-lived continental regolith.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swanson-Hysell, Nicholas L -- Rose, Catherine V -- Calmet, Claire C -- Halverson, Galen P -- Hurtgen, Matthew T -- Maloof, Adam C -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):608-11. doi: 10.1126/science.1184508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431011" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-19
    Description: Ediacaran (ca. 635–541 Ma) marine carbonates capture a global 13 C carbon isotope excursion to extremely negative values (~–12)—known as the Shuram excursion (SE)—that cannot be explained by conventional mass balance scenarios. Furthermore, the carbon isotopic variation of bulk organic matter (OM) does not mirror that of carbonate through the excursion, suggesting that the OM reflects a mixture of different sources. To evaluate this hypothesis, we investigated thermally immature marine sedimentary rocks that record the SE from the Sultanate of Oman. Compound-specific carbon isotopic analyses of the extractable hydrocarbons reveal low 13 C values of long-chain (〉C 20 ) n -alkanes and mid-chain monomethyl alkanes as low as –40. Such light signatures are rare in marine rocks of any age and provide evidence that the SE reflects a primary carbon cycle perturbation. The magnitude of the SE recorded in these organic phases is smaller than observed in carbonate and implies that the primary perturbation to dissolved inorganic carbon (DIC) was at least 5–7, and more likely 7–12, in magnitude when correcting for end-member source mixing. Due to isotopic differences in stratigraphic patterns of the different organic compounds, we propose that bulk organic carbon (both bitumen and kerogen) reflects source mixing between two distinct pools that previously masked the excursion in bulk 13 C org measurements. OM sources were derived both from autotrophs fixing 13 C-depleted DIC and from a less 13 C-depleted heterotrophic microbial biomass feeding on a marine OM pool sustained by petroleum expelled from older sedimentary OM. Expulsion of these sedimentary fluids also helps explain both the duration and magnitude of the SE.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-28
    Description: The Kikiktat volcanics (new name) of the northeastern Brooks Range of Arctic Alaska are exceptionally well-preserved Neoproterozoic continental tholeiites. This volcanic suite includes high-temperature picritic compositions, making them an excellent probe of mantle composition and temperature underlying the northern margin of Laurentia during the breakup of Rodinia. Detrital zircons from a volcaniclastic sample directly overlying basaltic flows of the Kikiktat volcanics were dated at 719.47 ± 0.29 Ma by U-Pb chemical abrasion–thermal ionization mass spectrometry. This age suggests that the Kikiktat volcanics are an extension of the Franklin large igneous province. Petrogenetic modeling indicates a simple crystallization sequence of olivine -〉 plagioclase -〉 clinopyroxene, recording anhydrous low-pressure fractionation of a picritic parental melt. The composition of this parental liquid requires melting of harzburgite in the spinel stability field, while temperature estimates of the primary melt indicate elevated mantle potential temperatures. In contrast to the ca. 720 Ma Natkusiak basalts of Victoria Island, the Kikiktat volcanics have very low Ti concentrations, consistent with melting of harzburgitic mantle possibly by thermal conduction of an underlying plume. These data are consistent with Neoproterozoic to early Paleozoic tectonic reconstructions that restore the North Slope of Arctic Alaska to the northeastern margin of Laurentia and not directly adjacent to Victoria Island.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-30
    Description: The emergence and expansion of animal life on Earth represents a dramatic shift in the structure and complexity of the biosphere. A lack of firm constraints on surface oxygen levels during the mid-Proterozoic has resulted in heated debate as to whether the rise and earliest diversification of animals was directly linked to a change in environmental oxygen levels or, instead, simply reflects the timing of innovations in gene expression and developmental regulation and was independent of a direct environmental trigger. Here, we present chromium (Cr) isotope data from marine black shales that provide evidence for minimal Cr oxidation throughout the mid-Proterozoic leading up to the diversification of eukaryotes and the rise of animals during the late Neoproterozoic. This observation requires very low background oxygen levels (〈1% of present atmospheric levels). Accepting previously proposed estimates of p O 2 levels needed to induce Cr isotope fractionation, our data provide support for the persistence of an Earth system in which baseline atmospheric p O 2 would have been low enough to inhibit the diversification of animals until ca. 800 Ma. More generally, evidence for a delayed rise of atmospheric oxygen strongly suggests that environmental factors have played a fundamental role in controlling the emergence and expansion of complex life on Earth.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-04
    Description: Before the onset of the Neoproterozoic Snowball Earth glaciations, eukaryotes had begun diversifying, and in their aftermath, macroscopic life, including both animals and macroalgae, became abundant and widespread. Although glacially driven mass extinctions have been hypothesized, little is known about the biosphere during and between these glaciations. Here we present new data from organic-walled microfossil assemblages from five successions in Australia and Svalbard that collectively span the first (Sturtian) glaciation and interglacial interval and integrate them with data derived from a critical evaluation of the literature to produce a new estimate of eukaryotic diversity from 850 to 650 Ma. These new glacial and interglacial assemblages consist of only smooth-walled spheroids (leiosphaerids), aggregates of cells, and filaments, in contrast to the much more diverse organic-walled microfossil assemblages found in early Neoproterozoic rocks. This contrast is not attributed to biases in deposition or preservation, but is instead interpreted as reflecting an interval of lowered eukaryotic diversity that spanned the glaciations and that may have begun millions of years prior to their onset.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-03
    Description: The Paleoproterozoic Mooidraai Formation is an up to 220 m thick succession of marine carbonate rocks that caps the Fe- and Mn-bearing Hotazel Formation in the Kalahari Manganese Field, South Africa. Although it occupies an important stratigraphic position within the upper Transvaal Supergroup, which records major perturbations of the early Paleoproterozoic biosphere, a detailed sedimentological study on the Mooidraai Formation has never been conducted. Here we present a detailed facies analysis that distinguishes eight carbonate and two iron formation lithofacies types. The lower Mooidraai Formation is dominated by carbonate rhythmites and slope breccias deposited on a foreslope, occasionally interbedded with oxide or carbonate facies iron formation. The upper part of the formation reflects various shelf and peritidal environments arranged in shallowing-upward parasequences. Clastic-textured massive dolarenites deposited in shelf and lagoonal environments typically form the base of parasequences and are overlain by subtidal thrombolites, lagoonal to intertidal microbialaminites, and upper intertidal to supratidal smoothly laminated stromatolites. Supratidal intraclast breccias cap shallowing-upward parasequences. Strong base level rise in the lower Mooidraai Formation reflects a transgressive systems tract tied to rapid early subsidence. Together with considerable lateral thickness variation in the following regressive systems tract, this suggests deposition in a basin with significant seafloor relief.
    Print ISSN: 1012-0750
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2017-06-09
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-29
    Description: Understanding the tectonic history of the supercontinent Rodinia is crucial for testing proposed links among Neoproterozoic tectonics, supercontinent cycles, climate, and biogeochemistry. The Neoproterozoic Mount Harper volcanics of the Ogilvie Mountains, Yukon, Canada, interfinger with Sturtian-age (ca. 717–660 Ma) glacial deposits that were deposited in narrow, fault-bounded basins related to the breakup of Rodinia. Here, we present new paleomagnetic data from the Mount Harper volcanics and isolate four paleomagnetic directions: a low-temperature direction recording the present geomagnetic field, a mid-temperature direction consistent with a Cretaceous overprint, and two high-temperature directions, one of which is carried by hematite and likely represents a chemical overprint, and the other of which is carried by magnetite and likely is a primary direction. This primary pole passes the fold and conglomerate tests and includes a reversal but is 50° away from the coeval 721–712 Ma Laurentian Franklin large igneous province pole. This difference can be reconciled using a 50° counterclockwise rotation of the Yukon block relative to Laurentia. The prerotation reconstruction of the Yukon block relative to Laurentia aligns Neoproterozoic fault orientations and facies belts between the Wernecke and Mackenzie Mountains, rectifies paleoflow measurements in Mesoproterozoic and Paleoproterozoic strata, and realigns the orientation of the ca. 1260 Ma Bear River dikes with the Mackenzie dike swarm of northern Canada. This reconstruction also facilitates future studies that relate Neoproterozoic sedimentary and structural patterns to the fragmentation of Rodinia. Finally, this low-latitude pole supports the snowball Earth interpretation of the ca. 717 Ma Sturtian glacial deposits.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...