ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-08
    Description: Magnetic influences increase in importance in the solar atmosphere from the photosphere out into the corona, yet our ability to routinely measure magnetic fields in the outer solar atmosphere is lacking. We describe the scientific objectives and capabilities of the COronal Solar Magnetism Observatory (COSMO), a proposed synoptic facility designed to measure magnetic fields and plasma properties in the large-scale solar atmosphere. COSMO comprises a suite of three instruments chosen to enable the study of the solar atmosphere as a coupled system: 1) a coronagraph with a 1.5-m aperture to measure the magnetic field, temperature, density and dynamics of the corona; 2) an instrument for diagnostics of chromospheric and prominence magnetic fields and plasma properties; and 3) a white-light K-coronagraph to measure the density structure and dynamics of the corona and coronal mass ejections. COSMO will provide a unique combination of magnetic field, density, temperature and velocity observations in the corona and chromosphere that have the potential to transform our understanding of fundamental physical processes in the solar atmosphere and their role in the origins of solar variability and space weather.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-09
    Description: We report on a secreted protein found in mammalian cochlear outer hair cells (OHC) that is a member of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of adhesion proteins. Ceacam16 mRNA is expressed in OHC, and its protein product localizes to the tips of the tallest stereocilia and the tectorial membrane (TM). This specific localization suggests a role in maintaining the integrity of the TM as well as in the connection between the OHC stereocilia and TM, a linkage essential for mechanical amplification. In agreement with this role, CEACAM16 colocalizes and coimmunoprecipitates with the TM protein α-tectorin. In addition, we show that mutation of CEACAM16 leads to autosomal dominant nonsyndromic deafness (ADNSHL) at the autosomal dominant hearing loss (DFNA4) locus. In aggregate, these data identify CEACAM16 as an α-tectorin–interacting protein that concentrates at the point of attachment of the TM to the stereocilia and, when mutated, results in ADNSHL at the DFNA4 locus.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-18
    Description: The solar chromosphere and transition region (TR) form an interface between the Sun's surface and its hot outer atmosphere. There, most of the nonthermal energy that powers the solar atmosphere is transformed into heat, although the detailed mechanism remains elusive. High-resolution (0.33-arc second) observations with NASA's Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere and TR that are replete with twist or torsional motions on sub-arc second scales, occurring in active regions, quiet Sun regions, and coronal holes alike. We coordinated observations with the Swedish 1-meter Solar Telescope (SST) to quantify these twisting motions and their association with rapid heating to at least TR temperatures. This view of the interface region provides insight into what heats the low solar atmosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Pontieu, B -- van der Voort, L Rouppe -- McIntosh, S W -- Pereira, T M D -- Carlsson, M -- Hansteen, V -- Skogsrud, H -- Lemen, J -- Title, A -- Boerner, P -- Hurlburt, N -- Tarbell, T D -- Wuelser, J P -- De Luca, E E -- Golub, L -- McKillop, S -- Reeves, K -- Saar, S -- Testa, P -- Tian, H -- Kankelborg, C -- Jaeggli, S -- Kleint, L -- Martinez-Sykora, J -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):1255732. doi: 10.1126/science.1255732. Epub 2014 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lockheed Martin Solar and Astrophysics Laboratory (LMSAL), 3251 Hanover Street, Organization A021S, Building 252, Palo Alto, CA 94304, USA. Institute of Theoretical Astrophysics, University of Oslo, Post Office Box 1029, Blindern, N-0315 Oslo, Norway. bdp@lmsal.com. ; Institute of Theoretical Astrophysics, University of Oslo, Post Office Box 1029, Blindern, N-0315 Oslo, Norway. ; High Altitude Observatory, National Center for Atmospheric Research, Post Office Box 3000, Boulder, CO 80307, USA. ; Lockheed Martin Solar and Astrophysics Laboratory (LMSAL), 3251 Hanover Street, Organization A021S, Building 252, Palo Alto, CA 94304, USA. ; Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. ; Department of Physics, Montana State University, Bozeman, Post Office Box 173840, Bozeman, MT 59717, USA. ; Bay Area Environmental Research Institute, 596 1st Street West, Sonoma, CA 95476, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324398" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-18
    Description: The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long-standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the Interface Region Imaging Spectrograph (IRIS) at the solar limb reveal a plethora of short, low-lying loops or loop segments at transition-region temperatures that vary rapidly, on the time scales of minutes. We argue that the existence of these loops solves a long-standing observational mystery. At the same time, based on comparison with numerical models, this detection sheds light on a critical piece of the coronal heating puzzle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansteen, V -- De Pontieu, B -- Carlsson, M -- Lemen, J -- Title, A -- Boerner, P -- Hurlburt, N -- Tarbell, T D -- Wuelser, J P -- Pereira, T M D -- De Luca, E E -- Golub, L -- McKillop, S -- Reeves, K -- Saar, S -- Testa, P -- Tian, H -- Kankelborg, C -- Jaeggli, S -- Kleint, L -- Martinez-Sykora, J -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):1255757. doi: 10.1126/science.1255757.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Theoretical Astrophysics, University of Oslo, Post Office Box 1029, Blindern, NO-0315, Oslo, Norway. viggoh@astro.uio.no. ; Institute of Theoretical Astrophysics, University of Oslo, Post Office Box 1029, Blindern, NO-0315, Oslo, Norway. Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Building 252, Palo Alto, CA 94304, USA. ; Institute of Theoretical Astrophysics, University of Oslo, Post Office Box 1029, Blindern, NO-0315, Oslo, Norway. ; Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Building 252, Palo Alto, CA 94304, USA. ; Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. ; Department of Physics, Montana State University, Bozeman, Post Office Box 173840, Bozeman, MT 59717, USA. ; Bay Area Environmental Research Institute, 596 1st Street West, Sonoma, CA 95476, USA. Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Building 252, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324399" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-16
    Description: It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isbell, Forest -- Craven, Dylan -- Connolly, John -- Loreau, Michel -- Schmid, Bernhard -- Beierkuhnlein, Carl -- Bezemer, T Martijn -- Bonin, Catherine -- Bruelheide, Helge -- de Luca, Enrica -- Ebeling, Anne -- Griffin, John N -- Guo, Qinfeng -- Hautier, Yann -- Hector, Andy -- Jentsch, Anke -- Kreyling, Jurgen -- Lanta, Vojtech -- Manning, Pete -- Meyer, Sebastian T -- Mori, Akira S -- Naeem, Shahid -- Niklaus, Pascal A -- Polley, H Wayne -- Reich, Peter B -- Roscher, Christiane -- Seabloom, Eric W -- Smith, Melinda D -- Thakur, Madhav P -- Tilman, David -- Tracy, Benjamin F -- van der Putten, Wim H -- van Ruijven, Jasper -- Weigelt, Alexandra -- Weisser, Wolfgang W -- Wilsey, Brian -- Eisenhauer, Nico -- England -- Nature. 2015 Oct 22;526(7574):574-7. doi: 10.1038/nature15374. Epub 2015 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, Saint Paul, Minnesota 55108, USA. ; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ; Institute of Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany. ; Ecological and Environmental Modelling Group, School of Mathematics and Statistics, University College Dublin, Dublin 4, Ireland. ; Centre for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis 09200, France. ; Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland. ; Department of Biogeography, BayCEER, University of Bayreuth, 95440 Bayreuth, Germany. ; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands. ; Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA. ; Institute of Biology, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany. ; Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany. ; Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK. ; USDA FS, Eastern Forest Environmental Threat Assessment Center, RTP, North Carolina 27709, USA. ; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. ; Disturbance Ecology, BayCEER, University of Bayreuth, 95440 Bayreuth, Germany. ; Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, D-17487 Greifswald, Germany. ; Department of Botany, Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic. ; Institute for Plant Sciences, University of Bern, CH-3013 Bern, Switzerland. ; Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universitat Munchen, 85354 Freising, Germany. ; Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan. ; Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York 10027, USA. ; US Department of Agriculture Agricultural Research Service, Grassland, Soil and Water Research Laboratory, Temple, Texas 76502, USA. ; Department of Forest Resources, University of Minnesota Twin Cities, Saint Paul, Minnesota 55108 USA. ; Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2753, Australia. ; UFZ Helmholtz Centre for Environmental Research, Community Ecology, 06120 Halle, Germany. ; Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA. ; Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106 USA. ; Crop and Soil Environmental Sciences, Smyth Hall 0404, Virginia Tech, Blacksburg, Virginia 24061, USA. ; Laboratory of Nematology, Wageningen University and Research Centre, PO Box 8123, 6700 ES Wageningen, The Netherlands. ; Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26466564" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Climate ; Climate Change/statistics & numerical data ; Conservation of Natural Resources ; Disasters/statistics & numerical data ; Droughts ; *Ecosystem ; Grassland ; Human Activities ; *Plant Physiological Phenomena
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-27
    Description: Author(s): Andrés Muñoz-Jaramillo, Laura A. Balmaceda, and Edward E. DeLuca The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth’s upper atmosphere (commonly referred to as space weather and climate). In recent years there has been an effort to develop accurate solar cycle predictions, leading t... [Phys. Rev. Lett. 111, 041106] Published Fri Jul 26, 2013
    Keywords: Gravitation and Astrophysics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Riassunto Sono state studiate le frequenze degli alleli al locusPl per la fosfatasi alcalina della placenta umana in 175 parti singoli verificatisi nella popolazione di Roma. Sono stati identificati tutti e 6 i fenotipi più comuni descritti in precedenza; la loro frequenza corrisponde a quella attesa secondo la legge diHardy-Weinberg. Le frequenze geniche sono risultate sovrapponibili a quelle riportate per le popolazioni Inglese e Svedese.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-09
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-12
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...