ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-09-06
    Description: There are currently few therapeutic options for patients with pancreatic cancer, and new insights into the pathogenesis of this lethal disease are urgently needed. Toward this end, we performed a comprehensive genetic analysis of 24 pancreatic cancers. We first determined the sequences of 23,219 transcripts, representing 20,661 protein-coding genes, in these samples. Then, we searched for homozygous deletions and amplifications in the tumor DNA by using microarrays containing probes for approximately 10(6) single-nucleotide polymorphisms. We found that pancreatic cancers contain an average of 63 genetic alterations, the majority of which are point mutations. These alterations defined a core set of 12 cellular signaling pathways and processes that were each genetically altered in 67 to 100% of the tumors. Analysis of these tumors' transcriptomes with next-generation sequencing-by-synthesis technologies provided independent evidence for the importance of these pathways and processes. Our data indicate that genetically altered core pathways and regulatory processes only become evident once the coding regions of the genome are analyzed in depth. Dysregulation of these core pathways and processes through mutation can explain the major features of pancreatic tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Sian -- Zhang, Xiaosong -- Parsons, D Williams -- Lin, Jimmy Cheng-Ho -- Leary, Rebecca J -- Angenendt, Philipp -- Mankoo, Parminder -- Carter, Hannah -- Kamiyama, Hirohiko -- Jimeno, Antonio -- Hong, Seung-Mo -- Fu, Baojin -- Lin, Ming-Tseh -- Calhoun, Eric S -- Kamiyama, Mihoko -- Walter, Kimberly -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Hartigan, James -- Smith, Douglas R -- Hidalgo, Manuel -- Leach, Steven D -- Klein, Alison P -- Jaffee, Elizabeth M -- Goggins, Michael -- Maitra, Anirban -- Iacobuzio-Donahue, Christine -- Eshleman, James R -- Kern, Scott E -- Hruban, Ralph H -- Karchin, Rachel -- Papadopoulos, Nickolas -- Parmigiani, Giovanni -- Vogelstein, Bert -- Velculescu, Victor E -- Kinzler, Kenneth W -- CA121113/CA/NCI NIH HHS/ -- CA43460/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA062924-130011/CA/NCI NIH HHS/ -- P50 CA062924-140011/CA/NCI NIH HHS/ -- P50 CA062924-160017/CA/NCI NIH HHS/ -- R01 CA121113/CA/NCI NIH HHS/ -- R01 CA121113-04/CA/NCI NIH HHS/ -- R37 CA043460/CA/NCI NIH HHS/ -- R37 CA043460-27/CA/NCI NIH HHS/ -- R37 CA057345/CA/NCI NIH HHS/ -- R37 CA057345-17/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Sep 26;321(5897):1801-6. doi: 10.1126/science.1164368. Epub 2008 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sol Goldman Pancreatic Cancer Research Center, Ludwig Center and Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772397" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/etiology/*genetics/*metabolism ; Algorithms ; Carcinoma, Pancreatic Ductal/etiology/genetics/metabolism ; Computational Biology ; Gene Amplification ; Gene Expression Profiling ; Genome, Human ; Humans ; Models, Molecular ; *Mutation ; Mutation, Missense ; Oligonucleotide Array Sequence Analysis ; Pancreatic Neoplasms/etiology/*genetics/*metabolism ; Point Mutation ; Polymorphism, Single Nucleotide ; Sequence Deletion ; Signal Transduction/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-08
    Description: Reactive oxygen species (ROS) are mutagenic and may thereby promote cancer. Normally, ROS levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors and is predominantly regulated by the transcription factor Nrf2 (also known as Nfe2l2) and its repressor protein Keap1 (refs 2-5). In contrast to the acute physiological regulation of Nrf2, in neoplasia there is evidence for increased basal activation of Nrf2. Indeed, somatic mutations that disrupt the Nrf2-Keap1 interaction to stabilize Nrf2 and increase the constitutive transcription of Nrf2 target genes were recently identified, indicating that enhanced ROS detoxification and additional Nrf2 functions may in fact be pro-tumorigenic. Here, we investigated ROS metabolism in primary murine cells following the expression of endogenous oncogenic alleles of Kras, Braf and Myc, and found that ROS are actively suppressed by these oncogenes. K-Ras(G12D), B-Raf(V619E) and Myc(ERT2) each increased the transcription of Nrf2 to stably elevate the basal Nrf2 antioxidant program and thereby lower intracellular ROS and confer a more reduced intracellular environment. Oncogene-directed increased expression of Nrf2 is a new mechanism for the activation of the Nrf2 antioxidant program, and is evident in primary cells and tissues of mice expressing K-Ras(G12D) and B-Raf(V619E), and in human pancreatic cancer. Furthermore, genetic targeting of the Nrf2 pathway impairs K-Ras(G12D)-induced proliferation and tumorigenesis in vivo. Thus, the Nrf2 antioxidant and cellular detoxification program represents a previously unappreciated mediator of oncogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeNicola, Gina M -- Karreth, Florian A -- Humpton, Timothy J -- Gopinathan, Aarthi -- Wei, Cong -- Frese, Kristopher -- Mangal, Dipti -- Yu, Kenneth H -- Yeo, Charles J -- Calhoun, Eric S -- Scrimieri, Francesca -- Winter, Jordan M -- Hruban, Ralph H -- Iacobuzio-Donahue, Christine -- Kern, Scott E -- Blair, Ian A -- Tuveson, David A -- CA084291/CA/NCI NIH HHS/ -- CA101973/CA/NCI NIH HHS/ -- CA105490/CA/NCI NIH HHS/ -- CA106610/CA/NCI NIH HHS/ -- CA111294/CA/NCI NIH HHS/ -- CA128920/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- R01 CA101973/CA/NCI NIH HHS/ -- R01 CA101973-05/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Jul 6;475(7354):106-9. doi: 10.1038/nature10189.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21734707" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Alleles ; Animals ; Antioxidants/metabolism ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic/genetics/*metabolism/*pathology ; Cells, Cultured ; Cytoskeletal Proteins/genetics/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Fibroblasts/metabolism ; Genes, myc/genetics ; Humans ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; JNK Mitogen-Activated Protein Kinases/metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase Kinases/metabolism ; NF-E2-Related Factor 2/deficiency/genetics/*metabolism ; NIH 3T3 Cells ; Oncogenes/*genetics ; Oxidation-Reduction ; Pancreatic Neoplasms/genetics/*metabolism/*pathology ; Proto-Oncogene Proteins B-raf/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Reactive Oxygen Species/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...