ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-06-06
    Description: CD8 T cells, which have a crucial role in immunity to infection and cancer, are maintained in constant numbers, but on antigen stimulation undergo a developmental program characterized by distinct phases encompassing the expansion and then contraction of antigen-specific effector (T(E)) populations, followed by the persistence of long-lived memory (T(M)) cells. Although this predictable pattern of CD8 T-cell responses is well established, the underlying cellular mechanisms regulating the transition to T(M) cells remain undefined. Here we show that tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an adaptor protein in the TNF-receptor and interleukin-1R/Toll-like receptor superfamily, regulates CD8 T(M)-cell development after infection by modulating fatty acid metabolism. We show that mice with a T-cell-specific deletion of TRAF6 mount robust CD8 T(E)-cell responses, but have a profound defect in their ability to generate T(M) cells that is characterized by the disappearance of antigen-specific cells in the weeks after primary immunization. Microarray analyses revealed that TRAF6-deficient CD8 T cells exhibit altered expression of genes that regulate fatty acid metabolism. Consistent with this, activated CD8 T cells lacking TRAF6 display defective AMP-activated kinase activation and mitochondrial fatty acid oxidation (FAO) in response to growth factor withdrawal. Administration of the anti-diabetic drug metformin restored FAO and CD8 T(M)-cell generation in the absence of TRAF6. This treatment also increased CD8 T(M) cells in wild-type mice, and consequently was able to considerably improve the efficacy of an experimental anti-cancer vaccine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803086/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803086/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, Erika L -- Walsh, Matthew C -- Cejas, Pedro J -- Harms, Gretchen M -- Shen, Hao -- Wang, Li-San -- Jones, Russell G -- Choi, Yongwon -- R01 AI064909/AI/NIAID NIH HHS/ -- R01 AI064909-04/AI/NIAID NIH HHS/ -- T32 CA009140/CA/NCI NIH HHS/ -- England -- Nature. 2009 Jul 2;460(7251):103-7. doi: 10.1038/nature08097. Epub 2009 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19494812" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/deficiency/genetics ; Animals ; CD8-Positive T-Lymphocytes/cytology/drug effects/*immunology/*metabolism ; Fatty Acids/*metabolism ; Hypoglycemic Agents/pharmacology ; Immunologic Memory/*immunology ; Listeria monocytogenes/immunology ; Listeriosis/immunology/metabolism/microbiology ; Metformin/pharmacology ; Mice ; Mice, Inbred C57BL ; Proto-Oncogene Proteins c-cbl/deficiency/genetics ; TNF Receptor-Associated Factor 6/*deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-12
    Description: Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to changing environmental conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. Research on tumor cell metabolism has provided valuable insight into metabolic pathways important for cell proliferation and the influence of metabolites themselves on signal transduction and epigenetic programming. In this Review, we highlight emerging concepts regarding metabolic reprogramming in proliferating cells and discuss their potential impact on T cell fate and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486656/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486656/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, Erika L -- Poffenberger, Maya C -- Chang, Chih-Hao -- Jones, Russell G -- AI091965/AI/NIAID NIH HHS/ -- CA158823/CA/NCI NIH HHS/ -- MOP-93799/Canadian Institutes of Health Research/Canada -- R01 AI091965/AI/NIAID NIH HHS/ -- R01 CA181125/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):1242454. doi: 10.1126/science.1242454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. erikapearce@path.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115444" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/metabolism ; Cell Differentiation ; Cell Proliferation ; *Citric Acid Cycle ; Gene Expression Regulation ; *Glycolysis ; Humans ; Ketoglutaric Acids/metabolism ; *Lymphocyte Activation ; Membrane Proteins/metabolism ; Mitochondria/immunology/metabolism ; Neoplasms/immunology/metabolism ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; T-Lymphocytes/*immunology/*metabolism ; Thyroid Hormones/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-11-08
    Description: Activated CD8+ T cells play a critical role in host defense against viruses, intracellular microbes, and tumors. It is not clear if a key regulatory transcription factor unites the effector functions of CD8+ T cells. We now show that Eomesodermin (Eomes), a paralogue of T-bet, is induced in effector CD8+ T cells in vitro and in vivo. Ectopic expression of Eomes was sufficient to invoke attributes of effector CD8+ T cells, including interferon-gamma (IFN-gamma), perforin, and granzyme B. Loss-of-function analysis suggests Eomes may also be necessary for full effector differentiation of CD8+ T cells. We suggest that Eomesodermin is likely to complement the actions of T-bet and act as a key regulatory gene in the development of cell-mediated immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, Erika L -- Mullen, Alan C -- Martins, Gislaine A -- Krawczyk, Connie M -- Hutchins, Anne S -- Zediak, Valerie P -- Banica, Monica -- DiCioccio, Catherine B -- Gross, Darrick A -- Mao, Chai-An -- Shen, Hao -- Cereb, Nezih -- Yang, Soo Y -- Lindsten, Tullia -- Rossant, Janet -- Hunter, Christopher A -- Reiner, Steven L -- AI-042370/AI/NIAID NIH HHS/ -- GM-07229/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1041-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute, and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14605368" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arenaviridae Infections/immunology ; Base Sequence ; CD8-Positive T-Lymphocytes/*immunology/physiology ; Cell Differentiation ; Cytotoxicity, Immunologic ; Gene Expression Regulation ; Granzymes ; Interferon-gamma/biosynthesis ; Lymphocyte Activation ; Lymphocytic choriomeningitis virus/immunology ; Membrane Glycoproteins/biosynthesis/genetics ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Molecular Sequence Data ; Perforin ; Pore Forming Cytotoxic Proteins ; RNA, Messenger/genetics/metabolism ; Serine Endopeptidases/biosynthesis/genetics ; T-Box Domain Proteins/chemistry/genetics/*physiology ; Th2 Cells/immunology/physiology ; Transcription Factors/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-28
    Description: The immune system influences the fate of developing cancers by not only functioning as a tumour promoter that facilitates cellular transformation, promotes tumour growth and sculpts tumour cell immunogenicity, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion. Yet, clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer-induced immunosuppression. In many individuals, immunosuppression is mediated by cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and programmed death-1 (PD-1), two immunomodulatory receptors expressed on T cells. Monoclonal-antibody-based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits-including durable responses--to patients with different malignancies. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Here we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T-cell rejection antigens following anti-PD-1 and/or anti-CTLA-4 therapy of mice bearing progressively growing sarcomas, and we show that therapeutic synthetic long-peptide vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Although mutant tumour-antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with anti-PD-1 and/or anti-CTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles, rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens are not only important targets of checkpoint blockade therapy, but they can also be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279952/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279952/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gubin, Matthew M -- Zhang, Xiuli -- Schuster, Heiko -- Caron, Etienne -- Ward, Jeffrey P -- Noguchi, Takuro -- Ivanova, Yulia -- Hundal, Jasreet -- Arthur, Cora D -- Krebber, Willem-Jan -- Mulder, Gwenn E -- Toebes, Mireille -- Vesely, Matthew D -- Lam, Samuel S K -- Korman, Alan J -- Allison, James P -- Freeman, Gordon J -- Sharpe, Arlene H -- Pearce, Erika L -- Schumacher, Ton N -- Aebersold, Ruedi -- Rammensee, Hans-Georg -- Melief, Cornelis J M -- Mardis, Elaine R -- Gillanders, William E -- Artyomov, Maxim N -- Schreiber, Robert D -- P01 AI054456/AI/NIAID NIH HHS/ -- P30 AR048335/AR/NIAMS NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P30 CA091842/CA/NCI NIH HHS/ -- P50 CA101942/CA/NCI NIH HHS/ -- R01 AI091965/AI/NIAID NIH HHS/ -- R01 CA043059/CA/NCI NIH HHS/ -- R01 CA190700/CA/NCI NIH HHS/ -- R37 CA043059/CA/NCI NIH HHS/ -- T32 CA009547/CA/NCI NIH HHS/ -- T32 CA00954729/CA/NCI NIH HHS/ -- U01 CA141541/CA/NCI NIH HHS/ -- England -- Nature. 2014 Nov 27;515(7528):577-81. doi: 10.1038/nature13988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA. ; Department of Immunology, Institute of Cell Biology, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tubingen, Auf der Morgenstelle 15, 72076 Tubingen, Germany. ; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland. ; 1] Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA [2] Department of Medicine, Division of Oncology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA. ; The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. ; ISA Therapeutics B.V., 2333 CH Leiden, The Netherlands. ; Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands. ; Bristol-Myers Squibb, 700 Bay Road, Redwood City, California 94063, USA. ; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, Zurich, 8093 Zurich, Switzerland. ; 1] ISA Therapeutics B.V., 2333 CH Leiden, The Netherlands [2] Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, The Netherlands. ; 1] The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA [2] Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25428507" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/*therapeutic use ; Antigens, Neoplasm/*genetics/*immunology ; CD8-Positive T-Lymphocytes/*immunology ; Cancer Vaccines/*therapeutic use ; Cell Cycle Checkpoints/*immunology ; Epitopes/genetics ; *Immunotherapy ; Male ; Mice ; Sarcoma/immunology/*therapy ; Vaccines, Synthetic/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Sullivan, David -- Pearce, Erika L -- New York, N.Y. -- Science. 2015 May 29;348(6238):976-7. doi: 10.1126/science.aac4997.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA. erikapearce@path.wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26023125" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology/*metabolism ; *Immunologic Memory ; Mitochondria/*metabolism ; Mitochondrial Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-28
    Description: A characteristic of memory T (TM) cells is their ability to mount faster and stronger responses to reinfection than naïve T (TN) cells do in response to an initial infection. However, the mechanisms that allow this rapid recall are not completely understood. We found that CD8 TM cells have more...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...