ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0028 ; 11/M 96.0038
    In: Reviews in mineralogy
    Description / Table of Contents: The Mineralogical Society of America sponsored a short course for which this was the text at Stanford University December 9 and 10, 1995, preceding the Fall Meeting of the American Geophysical Union and MSA in San Fransisco, with about 100 professionals and graduate students in attendance. A silicate melt phase is the essential component of nearly all igneous processes, with dramatic consequences for the properties of the Earth's interior. Throughout Earth history and continuing to the present day, silicate melts have acted as transport agents in the chemical and physical differentiation of the Earth into core, mantle and crust. The occurrence of such magmatic processes leads to the definition of our planet as "active," and the resulting volcanism has a profound impact on the Earth's atmosphere, hydrosphere and biosphere. Although near-surface melts are observed directly during volcanic eruptions, the properties of magmas deep within the Earth must be characterized and constrained by laboratory experiments. Many of these experiments are designed to aid in developing an atomic level understanding of the structure and dynamics of silicate melts under the P- T conditions of the Earth's crust and mantle, which will make extrapolation from the laboratory results to the behavior of natural magmas as reliable as possible. Silicate melts are also the archetypal glass-forming materials. Because of the ready availability of raw materials, and the ease with which molten silicates can be vitrified, commercial "glass" has necessarily implied a silicate composition, over most of the history of glass technology. The properties of the melt, or "slag" in metallurgical extractions, determine the nature of the glass formed, and the needs of the glass industry have provided much of the impetus for understanding the structure-property relations of molten silicates as well as for the glasses themselves. It is now recognized that any liquid might become glassy, if cooled rapidly enough, and understanding the thermodynamic and kinetic aspects of the glass transition, or passage between the liquid and glassy states of matter, has become a subject of intense interest in fundamental physics and chemistry. Glasses have also been studied in many geochemical investigations, often as substitutes for the high temperature melts, with the results being extrapolated to the liquid state. In many cases, in situ techniques for direct investigation of these refractory systems have only recently become available. Much valuable information concerning the melt structure has been gleaned from such studies. Nevertheless, there are fundamental differences between the liquid and glassy states. In liquids, the structure becomes progressively more disordered with increasing temperature, which usually gives rise to major changes in all thermodynamic properties and processes. These changes must, in general, be investigated directly by in situ studies at high temperature. Studies of glass only represent a starting point, which reflect a frozen image of the melt "structure" at the glass transition temperature. This is generally hundreds of degrees below the near-liquidus temperatures of greatest interest to petrologists. Since the early 1980s, a much deeper understanding of the structure, dynamics, and properties of molten silicates has been developed within the geochemical community, applying techniques and concepts developed within glass science, extractive metallurgy and liquid state physics. Some of these developments have far-reaching implications for igneous petrology. The purpose of this Short Course and volume is to introduce the basic concepts of melt physics and relaxation theory as applied to silicate melts, then to describe the current state of experimental and computer simulation techniques for exploring the detailed atomic structure and dynamic processes which occur at high temperature, and finally to consider the relationships between melt structure, thermodynamic properties and rheology within these liquids. These fundamental relations serve to bridge the extrapolation from often highly simplified melt compositions studied in the laboratory to the multicomponent systems found in nature. This volume focuses on the properties of simple model silicate systems, which are usually volatile-free. The behavior of natural magmas has been summarized in a previous Short Course volume (Nicholls and Russell, editors, 1990: Reviews in Mineralogy, Vol. 24), and the effect of volatiles on magmatic properties in yet another (Carroll and Holloway, editors, 1994: Vol. 30). In the chapters by Moynihan, by Webb and Dingwell, and by Richet and Bottinga, the concepts of relaxation and the glass transition are introduced, along with techniques for studying the rheology of silicate liquids, and theories for understanding the transport and relaxation behavior in terms of the structure and thermodynamic properties of the liquid. The chapter by Dingwell presents applications of relaxation-based studies of melts in the characterization of their properties. Chapters by Stebbins, by Brown, Farges and Calas, and by McMillan and Wolf present the principal techniques for studying the melt structure and atomic scale dynamics by a variety of spectroscopic and diffraction methods. Wolf and McMillan summarize our current understanding of the effects of pressure on silicate glass and melt structure. Chapters by Navrotsky and by Hess consider the thermodynamic properties and mixing relations in simple and multicomponent aluminosilicate melts, both from a fundamental structural point of view and empirical chemical models which can be conveniently extrapolated to natural systems. The chapter by Chakraborty describes the diffusivity of chemical species in silicate melts and glasses, and the chapter by Poole, McMillan and Wolf discusses the application of computer simulation methods to understanding the structure and dynamics of molten silicates. The emphasis in this volume is on reviewing the current state of knowledge of the structure, dynamics and physical properties of silicate melts, along with present capabilities for studying the molten state under conditions relevant to melting within the Earth, with the intention that these techniques and results can then be applied to understanding and modeling both the nature of silicate melts and the role of silicate melts in nature.
    Type of Medium: Monograph available for loan
    Pages: xv, 616 S.
    ISBN: 0-939950-39-1 , 978-0-939950-39-3
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 32
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Structural Relaxation and the Glass Transition by Cornelius T. Moynihan, p. 1 - 20 Chapter 2. Relaxation in Silicate Melts: Some Applications by Donald B. Dingwell, p. 21 - 66 Chapter 3. Rheology and Configurational Entropy of Silicate Melts by P. Richet & Y. Bottinga, p. 67 - 94 Chapter 4. Viscoelasticity by Sharon L. Webb and Donald B. Dingwell, p. 95 - 120 Chapter 5. Energetics of Silicate Melts by Alexandra Navrotsky, p. 121 - 144 Chapter 6. Thermodynamic Mixing Properties and the Structure of Silicate Melts by Paul C. Hess, p. 145 - 190 Chapter 7. Dynamics and Structure of Silicate and Oxide Melts: Nuclear Magnetic Resonance Studies by Jonathan F. Stebbins, p. 191 - 246 Chapter 8. Vibrational Spectroscopy of Silicate Liquids by Paul F. McMillan and George H. Wolf, p. 247 - 316 Chapter 9. X-ray Scattering and X-ray Spectroscopy Studies of Silicate Melts by Gordon E. Brown, Jr., François Farges, and G. Calas, p. 317 - 410 Chapter 10. Diffusion in Silicate Melts by Sumit Chakraborty, p. 411 - 504 Chapter 11. Pressure Effects on Silicate Melt Structure and Properties by G. H. Wolf and Paul F. McMillan, p. 505 - 562 Chapter 12. Computer Simulations of Silicate Melts by Peter H. Poole, Paul F. McMillan, and George H. Wolf, p. 563 - 616
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-20
    Description: Over the last decades, remote observation tools and models have been developed to improve the forecasting of ash‐rich volcanic plumes. One challenge in these forecasts is knowing the properties at the vent, including the mass eruption rate and grain size distribution (GSD). Volcanic lightning is a common feature of explosive eruptions with high mass eruption rates of fine particles. The GSD is expected to play a major role in generating lightning in the gas thrust region via triboelectrification. Here, we experimentally investigate the electrical discharges of volcanic ash as a function of varying GSD. We employ two natural materials, a phonolitic pumice and a tholeiitic basalt (TB), and one synthetic material (soda‐lime glass beads [GB]). For each of the three materials, coarse and fine grain size fractions with known GSDs are mixed, and the particle mixture is subjected to rapid decompression. The experiments are observed using a high‐speed camera to track particle‐gas dispersion dynamics during the experiments. A Faraday cage is used to count the number and measure the magnitude of electrical discharge events. Although quite different in chemical composition, TB and GB show similar vent dynamics and lightning properties. The phonolitic pumice displays significantly different ejection dynamics and a significant reduction in lightning generation. We conclude that particle‐gas coupling during an eruption, which in turn depends on the GSD and bulk density, plays a major role in defining the generation of lightning. The presence of fines, a broad GSD, and dense particles all promote lightning.
    Description: Plain Language Summary: Explosive volcanic eruptions are accompanied by volcanic lightning (VL), which are electrical discharges resulting from particles that become electrically charged during eruption. We investigated experimentally the discharge behavior of three different materials by performing shock‐tube experiments. We used different rocks and analog material. We focused on the abundance of particle sizes smaller 〈10 μm (very fine ash) by testing individual grain size fractions mixed with coarser grains. The jet behavior was recorded by a high‐speed camera. We find that the presence of very fine particles has a major influence on the probability to produce electrical discharges within the particle‐laden jet. Based on our experiments, more VL is expected when (a) fine ash is abundant, (b) there is a wide grain size distribution, and (c) the particles are dense.
    Description: Key Points: Electrical discharges are generated in experimentally decompressed volcanic ash. The presence of fines (〈10 μm), a broad grain size distribution, and dense particles promote laboratory‐generated volcanic lightning. The coupling of the particles to the jet determines whether an electrical discharge occurs within the jet.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: European Research Council
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: CIFAR Earth 4D
    Keywords: ash ; electric charge ; rapid decompression ; volcanic lightning
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-23
    Description: Magmas vesiculate during ascent, producing complex interconnected pore networks, which can act as outgassing pathways and then deflate or compact to volcanic plugs. Similarly, in-conduit fragmentation events during dome-forming eruptions create open systems transiently, before welding causes pore sealing. The percolation threshold is the first-order transition between closed- and open-system degassing dynamics. Here, we use time-resolved, synchrotron-source X-ray tomography to image synthetic magmas that go through cycles of opening and closing, to constrain the percolation threshold ΦC at a range of melt crystallinity, viscosity and overpressure pertinent to shallow magma ascent. During vesiculation, we observed different percolative regimes for the same initial bulk crystallinity depending on melt viscosity and gas overpressure. At high viscosity (〉 106 Pa s) and high overpressure (~ 1–4 MPa), we found that a brittle-viscous regime dominates in which brittle rupture allows system-spanning coalescence at a low percolation threshold (ΦC~0.17) via the formation of fracture-like bubble chains. Percolation was followed by outgassing and bubble collapse causing densification and isolation of the bubble network, resulting in a hysteresis in the evolution of connectivity with porosity. At low melt viscosity and overpressure, we observed a viscous regime with much higher percolation threshold (ΦC 〉 0.37) due to spherical bubble growth and lower degree of crystal connection. Finally, our results also show that sintering of crystal-free and crystal-bearing magma analogues is characterised by low percolation thresholds (ΦC = 0.04 – 0.10). We conclude that the presence of crystals lowers the percolation threshold during vesiculation and may promote outgassing in shallow, crystal-rich magma at initial stages of Vulcanian and Strombolian eruptions.
    Description: Paul Scherrer Institut http://dx.doi.org/10.13039/501100004219
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: NERC
    Description: Deutsche Forschungsgemeinschaft
    Keywords: ddc:550.724 ; Effusive-explosive transition ; Percolation threshold ; Outgassing ; Crystal-rich magma ; Magma viscosity ; Gas overpressure ; Porosity ; Pore connectivity ; Hysteresis ; Strombolian/Vulcanian eruptions ; Dome-forming eruptions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-23
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Breadcrust bombs formed during Vulcanian eruptions are assumed to originate from the shallow plug or dome. Their rim to core texture reflects the competition between cooling and degassing timescales, which results in a dense crust with isolated vesicles contrasting with a highly vesicular vesicle network in the interior. Due to relatively fast quenching, the crust can shed light on pre‐ and syn‐eruptive conditions prior to or during fragmentation, whereas the interior allows us to explore post‐fragmentation vesiculation. Investigation of pre‐ to post‐fragmentation processes in breadcrust bombs from the 1999 Vulcanian activity at Guagua Pichincha, Ecuador, via 2D and 3D textural analysis reveals a complex vesiculation history, with multiple, spatially localized nucleation and growth events. Large vesicles (Type 1), present in low number density in the crust, are interpreted as pre‐eruptive bubbles formed by outgassing and collapse of a permeable bubble network during ascent or stalling in the plug. Haloes of small, syn‐fragmentation vesicles (Type 2), distributed about large vesicles, are formed by pressurization and enrichment of volatiles in these haloes. The nature of the pressurization process in the plug is discussed in light of seismicity and ground deformation signals, and previous textural and chemical studies. A third population (Type 3) of post‐fragmentation small vesicles appears in the interior of the bomb, and growth and coalescence of Type 2 and 3 vesicles causes the transition from isolated to interconnected bubble network in the interior. We model the evolution of viscosity, bubble growth rate, diffusion timescales, bubble radius and porosity during fragmentation and cooling. These models reveal that thermal quenching dominates in the crust whereas the interior undergoes a viscosity quench caused by degassing, and that the transition from crust to interior corresponds to the onset of percolation and development of permeability in the bubble network.〈/p〉
    Description: Plain Language Summary: Breadcrust bombs are volcanic ejecta formed during explosive volcanic eruptions by rapid cooling of the exterior (the crust) and slow cooling of the interior that causes gas loss, bubble growth and cracking of the exterior. The rapidly cooled crust preserves characteristics of the magma prior to explosion. We study here the variations in porosity and vesicle properties from crust to interior in breadcrust bombs from the Guagua Pichincha volcano in Ecuador. Our results shed light on the pre‐eruptive conditions in the magma prior to explosive activity, and on the post‐fragmentation evolution of the bomb interior by bubble formation.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Vesicle textures in breadcrust bombs correlate with pre‐ to post‐fragmentation degassing processes during Vulcanian eruptions〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Large isolated vesicles preserved in the crust record a pre‐eruptive episode of outgassing and pressurization prior to fragmentation〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Small vesicles provide insights into post‐fragmentation onset of permeability from the crust to the interior〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: ERC
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: National Science Foundation
    Description: German Research Foundation
    Description: https://doi.org/10.26022/IEDA/112846
    Keywords: ddc:552 ; breadcrust bombs ; Vulcanian eruptions ; vesicle number density ; vesiculation ; bubble nucleation ; fragmentation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Terra nova 13 (2001), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Relaxation geospeedometry using differential scanning calorimetry (DSC) has been applied to quantify the cooling history across the glass transition of flow ramps at the front of the calc-alkaline rhyolite Rocche Rosse flow of Lipari, Aeolian Islands, Italy. Modelled cooling rates for the obsidian retrieved from two profiles range between 0.2 and 0.03 K min–1. Cooling at the flow front appears to be dominated by conductive heat loss of individual flow ramps forming individual cooling units. Cooling rates of tens of Kelvins per day appear to have controlled the last stage of viscous deformation before the entire flow came to rest. It is inferred that cooling rates slower than those modelled are required to sustain flow in highly viscous rhyolitic lavas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 127 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The present experimental study deals with the laboratory modelling of two different mechanisms of gravitational percolation in partially melted rocks: (1) diapiric percolation of heavy material and (2) the sedimentation of heavy particles. These two mechanisms of mass transport in partially melted rocks result in different, scales of the segregation process in the melt-crystal matrix. A centrifuge furnace was used to simulate the percolation of the heavy particle layer through the partially molten granite at temperatures of up to 1000 °C. Samples of Beauvoir granite (Massif Central, France, grain size 0.16–0.5 mm with an initial degree of partial melting ∼45 per cent) were used as a matrix. A layer of Pt powder suspended in a melt of the same composition as the partially melted matrix was placed on the top of the granite sample. After centrifuging for various times (up to 2 × 104 s), X-ray images of samples were obtained and the evolution of the percolation process of heavy suspension in the partially molten granite was monitored from the Pt particle distribution. The diapiric or finger regime of percolation starts when the growth rate of a Raleigh-Taylor instability of the heavy layer is faster than the Stokes sedimentation velocity of individual particles in the upper layer. This relationship is a complex function of the size and initial concentration of heavy particles, as well as the ratio of particle to crystal size, the permeability of the matrix, and the heterogeneity scale in the partially melted matrix. At small concentrations (several per cent) and at large concentrations (where close packing of heavy particles results in an anomalous viscosity increase in the upper heavy layer) Stokes sedimentation is dominant in the vertical percolation of the heavy material. The sinking velocity of the diapir decreases when the size of heavy particles in it becomes comparable with the size of crystals in the partially melted granite. In this situation the vertical sinking of the diapir is not stable and the horizontal instability of the vertical mass transport starts to become important. Mass transport via diapiric percolation results in more efficient crystal-melt segregation of partially melted rocks. The percolation of individual particles provides only local melt-crystal flow on a scale comparable with the heavy particle size. The diapiric percolation provides a much larger scale of partial melt segregation with a length-scale comparable with the diapir size.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 127 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The present study deals with the experimental modelling of two different mechanisms of crystal-melt segregation in crustal rocks: (1) the buoyancy-driven compaction of the crystal + melt matrix and (2) melt filtering in a partially crystalline matrix due to differential stresses. These two segregation mechanisms have differing relative efficiencies in the deformation of crustal rocks and result in different texture scales depending on melt fraction, melt viscosity and tectonic stresses. A centrifuge furnace has been used in the present study for the modelling of melt migration in partially molten granitic rocks. Samples of Beauvoir granite (Massif Central, France) with a grain size of 0.16–0.5 mm and dimensions of diameter ∼5 mm, length ∼16 mm were used. These samples had been pre-fused at temperatures of 1000–1075 °C, yielding an initial average melt fraction of ∼45–50 volume per cent. The centrifuging of partially melted samples during ∼6 hr at an acceleration of 1000g (g is gravity) results in a linear vertical distribution of melt over the length of the sample without the development of a compaction layer. The gradient of the melt fraction (melt migrates to the top of samples) correlates with temperature: 1075°C ∼7 volume per cent mm-1; 1050°C ∼4 volume per cent mm-1; 1000°C ∼1.5 volume per cent mm-1. The calculated rate of melt migration varies from 3x10-5 cm s-1 (1075°C) to 2x10-6 cm s-1 (1000°C).Differential stresses of ∼0.7–1.4 MPa have been generated in the centrifuge by putting a piston (weight ∼1.02–2.05 g, diameter ∼4.5 mm) on the top of the partially melted sample, which is then centrifuged at ∼1000g. The rate of melt squeezing from the sample in this case is about two orders of magnitude higher than that observed without the piston. After centrifuging for 6 hr, a compaction layer below the piston is formed with a thickness of ∼2.5 mm and a crystal fraction of ∼70–65 volume per cent. Further centrifuging (∼15 hr) does not result in any increase of the compaction-layer thickness or volume percentage of crystals in it. The comparison of the two segregation mechanisms confirms the much greater efficiency of differential-stress-induced melt segregation and accumulation in veins and pockets than the compaction mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 19 (1993), S. 445-453 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The thermal expansivity of liquid GeO2 at temperatures just above the glass transition has been obtained using a combination of scanning calorimetry and dilatometry. The calorimetric and dilatometric curves of c p and dV/dT are normalized to the temperature derivative of fictive temperature versus temperature using the method of Webb et al. (1992). This normalization, based on the equivalence of relaxation parameters for volume and enthalpy, allows the completion of the dilatometric trace across the glass transition to yield liquid expansivity and volume. The values of liquid volume and expansivity obtained in this study are combined with high temperature densitometry determinations of the liquid volume of GeO2 by Sekiya et al. (1980) to yield a temperature-volume relation for GeO2 melt from 660 to 1400 °C. Liquid GeO2 shows a strongly temperature-dependent liquid molar expansivity, decreasing from 20.27 × 10−4 cm3 mol−1°C−1 to 1.97 × 10−4cm3 mol−1 °C−1 with increasing temperature. The coefficient of volume thermal expansion (α v ) decreases from 76.33 × 10−6 °C−1 to 2.46 × 10−6 °C−1 with increasing temperature. A qualitatively similar volume-temperature relationship, with α v decreasing from 335 × 10−6 °C−1 to 33 × 10−6 °C−1 with increasing temperature, has been observed previously in liquid B2O3. The determination of the glass transition temperature, liquid volume, liquid and glassy expansivities and heat capacities in this study, combined with compressibility data for glassy and liquid GeO2 from the literature (Soga 1969; Kurkjian et al. 1972; Scarfe et al. 1987) allows the calculation of the Prigogine-Defay ratio (Π), c p -c v and the thermal Grüneisen parameter (γ th) for GeO2. From available data on liquid SiO2 it is concluded that liquid GeO2 is not a good analog for the low pressure properties of liquid SiO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 21 (1994), S. 501-509 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Ti K-edge XANES spectra have been collected on a series of Ti-bearing silicate glasses with metasilicate and tetrasilicate compositions. The intensity of the preedge feature in these spectra has been found to change with glass composition and varies from 29 to 58% (normalized intensity) suggesting a variation in structural environent around the absorbing atom. The pre-edge peak intensity increases for the alkali titanium tetrasilicate glasses from 35% to 58% in the order Li 〈 Na 〈 K 〈 Rb, Cs whereas for the metasilicate compositions there is a maximum for the K-bearing glass. The pre-edge peak intensity remains constant for the alkaline earth titanium metasilicate glasses, Ca and Sr (34%) but increases slightly for Ba (41%). As the intensity of this feature is inversely correlated with coordination number, a comparison of the pre-edge intensity data for the investigated glasses with those of materials of known coordination number leads us to establish a regression equation and to infer that the average coordination number of Ti in these glasses ranges from 4.8 to 5.8. Large alkali cations appear to stabilize a relatively low average coordination number for Ti in silicate melts. The Ti structural environment results appear also to vary as a function of SiO2 content within the K2O-TiO2-SiO2 system. A number of physical properties of the melts from which these glasses were quenched and of other Ti-bearing silicate melts, have been determined in recent years. Clear evidence of a variable coordination number of Ti, consistent with the interpretation of the present XANES data is available from density measurements. These and other property determinations are compared with the present spectroscopic observations in an attempt to relate structure and properties in these melts which contain a major component with variable coordination number.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 55 (1993), S. 147-154 
    ISSN: 1432-0819
    Keywords: Rhyolite ; rheology ; vesiculation ; bubble growth ; shear stresses ; foaming ; two-phase suspension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The style of magma eruption depends strongly on the character of melt degassing and foaming. Depending on the kinetics of these processes the result can be either explosive or effusive volcanism. In this study the kinetics of foaming due to the internal stresses of gas expansion of two types of obsidian have been investigated in time series experiments (2 min-24 h) followed by quenching the samples. The volumetric gas-melt ratio has been estimated through the density measurements of foamed samples. The variation of gas volume (per unit or rhyolite melt volume) with time may be described by superposition of two exponentials responsible for gas generation and gas release processes respectively. An observed difference in foaming style in this study is interpreted as the result of variations in initial contents of microlites that serve as bubble nucleation centers during devolatilization of the melts. Quantitatively the values of the gas generation rate constants (k g) are more than an order of magnitude higher in microlite-rich obsidian than in microlite-free obsidian. Possible origins of differences in the degassing style of natural magmas are discussed in the light of bubble nucleation kinetics in melts during foaming. In a complementary set of experiments the mechanical response of vesicular melt to external shear stress has been determined in a concentric cylinder viscometer. The response of vesicular melt to the pulse of shear deformation depends on the volume fraction of bubbles. The obtained response function can be qualitatively described by a Burgers body model. The experimental shear stress response function for bubble-bearing melt has an overshoot due to the strain-dependent rheology of a twophase liquid with viscously deformable inclusions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...