ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-04-08
    Description: Aortic aneurysm and dissection are manifestations of Marfan syndrome (MFS), a disorder caused by mutations in the gene that encodes fibrillin-1. Selected manifestations of MFS reflect excessive signaling by the transforming growth factor-beta (TGF-beta) family of cytokines. We show that aortic aneurysm in a mouse model of MFS is associated with increased TGF-beta signaling and can be prevented by TGF-beta antagonists such as TGF-beta-neutralizing antibody or the angiotensin II type 1 receptor (AT1) blocker, losartan. AT1 antagonism also partially reversed noncardiovascular manifestations of MFS, including impaired alveolar septation. These data suggest that losartan, a drug already in clinical use for hypertension, merits investigation as a therapeutic strategy for patients with MFS and has the potential to prevent the major life-threatening manifestation of this disorder.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482474/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482474/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Habashi, Jennifer P -- Judge, Daniel P -- Holm, Tammy M -- Cohn, Ronald D -- Loeys, Bart L -- Cooper, Timothy K -- Myers, Loretha -- Klein, Erin C -- Liu, Guosheng -- Calvi, Carla -- Podowski, Megan -- Neptune, Enid R -- Halushka, Marc K -- Bedja, Djahida -- Gabrielson, Kathleen -- Rifkin, Daniel B -- Carta, Luca -- Ramirez, Francesco -- Huso, David L -- Dietz, Harry C -- K08 HL067056/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 7;312(5770):117-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601194" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Antagonists/administration & dosage/therapeutic use ; Angiotensin II Type 1 Receptor Blockers/administration & dosage/*therapeutic use ; Animals ; Antibodies/immunology ; Aorta/pathology ; Aortic Aneurysm/etiology/*prevention & control ; *Disease Models, Animal ; Elastic Tissue/pathology ; Female ; Losartan/administration & dosage/*therapeutic use ; Lung/pathology ; Lung Diseases/drug therapy/pathology ; Marfan Syndrome/complications/*drug therapy/metabolism/pathology ; Mice ; Microfilament Proteins/genetics ; Mutation ; Neutralization Tests ; Pregnancy ; Pregnancy Complications/drug therapy ; Propranolol/administration & dosage/therapeutic use ; Pulmonary Alveoli/pathology ; Receptor, Angiotensin, Type 1/metabolism ; Signal Transduction ; Transforming Growth Factor beta/antagonists & inhibitors/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-16
    Description: Transforming growth factor-beta (TGFbeta) signaling drives aneurysm progression in multiple disorders, including Marfan syndrome (MFS), and therapies that inhibit this signaling cascade are in clinical trials. TGFbeta can stimulate multiple intracellular signaling pathways, but it is unclear which of these pathways drives aortic disease and, when inhibited, which result in disease amelioration. Here we show that extracellular signal-regulated kinase (ERK) 1 and 2 and Smad2 are activated in a mouse model of MFS, and both are inhibited by therapies directed against TGFbeta. Whereas selective inhibition of ERK1/2 activation ameliorated aortic growth, Smad4 deficiency exacerbated aortic disease and caused premature death in MFS mice. Smad4-deficient MFS mice uniquely showed activation of Jun N-terminal kinase-1 (JNK1), and a JNK antagonist ameliorated aortic growth in MFS mice that lacked or retained full Smad4 expression. Thus, noncanonical (Smad-independent) TGFbeta signaling is a prominent driver of aortic disease in MFS mice, and inhibition of the ERK1/2 or JNK1 pathways is a potential therapeutic strategy for the disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holm, Tammy M -- Habashi, Jennifer P -- Doyle, Jefferson J -- Bedja, Djahida -- Chen, YiChun -- van Erp, Christel -- Lindsay, Mark E -- Kim, David -- Schoenhoff, Florian -- Cohn, Ronald D -- Loeys, Bart L -- Thomas, Craig J -- Patnaik, Samarjit -- Marugan, Juan J -- Judge, Daniel P -- Dietz, Harry C -- P01 AR049698/AR/NIAMS NIH HHS/ -- P01 AR049698-07/AR/NIAMS NIH HHS/ -- R01 AR041135/AR/NIAMS NIH HHS/ -- R01 AR041135-12/AR/NIAMS NIH HHS/ -- R01 AR041135-17/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):358-61. doi: 10.1126/science.1192149.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493862" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthracenes/pharmacology/therapeutic use ; Aorta/pathology ; Aortic Aneurysm/*metabolism/pathology/physiopathology/prevention & control ; Diphenylamine/analogs & derivatives/pharmacology/therapeutic use ; Disease Models, Animal ; Disease Progression ; Enzyme Activation ; Losartan/pharmacology/therapeutic use ; *MAP Kinase Signaling System ; Marfan Syndrome/drug therapy/*metabolism/pathology ; Mice ; Mitogen-Activated Protein Kinase 1/antagonists & inhibitors/*metabolism ; Mitogen-Activated Protein Kinase 3/antagonists & inhibitors/*metabolism ; Mitogen-Activated Protein Kinase 8/antagonists & inhibitors/metabolism ; Protein Kinase Inhibitors/pharmacology/therapeutic use ; Smad2 Protein/metabolism ; Smad4 Protein/deficiency/genetics ; Sulfonamides/pharmacology/therapeutic use ; Transforming Growth Factor beta/antagonists & inhibitors/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-04-16
    Description: Angiotensin II (AngII) mediates progression of aortic aneurysm, but the relative contribution of its type 1 (AT1) and type 2 (AT2) receptors remains unknown. We show that loss of AT2 expression accelerates the aberrant growth and rupture of the aorta in a mouse model of Marfan syndrome (MFS). The selective AT1 receptor blocker (ARB) losartan abrogated aneurysm progression in the mice; full protection required intact AT2 signaling. The angiotensin-converting enzyme inhibitor (ACEi) enalapril, which limits signaling through both receptors, was less effective. Both drugs attenuated canonical transforming growth factor-beta (TGFbeta) signaling in the aorta, but losartan uniquely inhibited TGFbeta-mediated activation of extracellular signal-regulated kinase (ERK), by allowing continued signaling through AT2. These data highlight the protective nature of AT2 signaling and potentially inform the choice of therapies in MFS and related disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Habashi, Jennifer P -- Doyle, Jefferson J -- Holm, Tammy M -- Aziz, Hamza -- Schoenhoff, Florian -- Bedja, Djahida -- Chen, YiChun -- Modiri, Alexandra N -- Judge, Daniel P -- Dietz, Harry C -- P01 AR049698/AR/NIAMS NIH HHS/ -- P01 AR049698-07/AR/NIAMS NIH HHS/ -- R01 AR041135/AR/NIAMS NIH HHS/ -- R01 AR041135-17/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):361-5. doi: 10.1126/science.1192152.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493863" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensin II/metabolism ; Angiotensin II Type 1 Receptor Blockers/pharmacology/therapeutic use ; Angiotensin-Converting Enzyme Inhibitors/pharmacology/therapeutic use ; Animals ; Aorta ; Aortic Aneurysm/drug therapy/*metabolism/pathology/prevention & control ; Aortic Rupture/metabolism/pathology/prevention & control ; Disease Models, Animal ; Disease Progression ; Enalapril/pharmacology/therapeutic use ; Losartan/pharmacology/therapeutic use ; MAP Kinase Signaling System ; Marfan Syndrome/drug therapy/*metabolism/pathology ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinase 1/*antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinase 3/*antagonists & inhibitors/metabolism ; Receptor, Angiotensin, Type 2/genetics/*metabolism ; *Signal Transduction ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-29
    Description: Cellular reprogramming of somatic cells to patient-specific induced pluripotent stem cells (iPSCs) enables in vitro modelling of human genetic disorders for pathogenic investigations and therapeutic screens. However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging owing to the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited heart disease characterized by pathological fatty infiltration and cardiomyocyte loss predominantly in the right ventricle, which is associated with life-threatening ventricular arrhythmias. Over 50% of affected individuals have desmosome gene mutations, most commonly in PKP2, encoding plakophilin-2 (ref. 9). The median age at presentation of ARVD/C is 26 years. We used previously published methods to generate iPSC lines from fibroblasts of two patients with ARVD/C and PKP2 mutations. Mutant PKP2 iPSC-CMs demonstrate abnormal plakoglobin nuclear translocation and decreased beta-catenin activity in cardiogenic conditions; yet, these abnormal features are insufficient to reproduce the pathological phenotypes of ARVD/C in standard cardiogenic conditions. Here we show that induction of adult-like metabolic energetics from an embryonic/glycolytic state and abnormal peroxisome proliferator-activated receptor gamma (PPAR-gamma) activation underlie the pathogenesis of ARVD/C. By co-activating normal PPAR-alpha-dependent metabolism and abnormal PPAR-gamma pathway in beating embryoid bodies (EBs) with defined media, we established an efficient ARVD/C in vitro model within 2 months. This model manifests exaggerated lipogenesis and apoptosis in mutant PKP2 iPSC-CMs. iPSC-CMs with a homozygous PKP2 mutation also had calcium-handling deficits. Our study is the first to demonstrate that induction of adult-like metabolism has a critical role in establishing an adult-onset disease model using patient-specific iPSCs. Using this model, we revealed crucial pathogenic insights that metabolic derangement in adult-like metabolic milieu underlies ARVD/C pathologies, enabling us to propose novel disease-modifying therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753229/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753229/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Changsung -- Wong, Johnson -- Wen, Jianyan -- Wang, Shirong -- Wang, Cheng -- Spiering, Sean -- Kan, Natalia G -- Forcales, Sonia -- Puri, Pier Lorenzo -- Leone, Teresa C -- Marine, Joseph E -- Calkins, Hugh -- Kelly, Daniel P -- Judge, Daniel P -- Chen, Huei-Sheng Vincent -- R01 AR052779/AR/NIAMS NIH HHS/ -- R01 AR056712/AR/NIAMS NIH HHS/ -- R01 HL058493/HL/NHLBI NIH HHS/ -- R01 HL101189/HL/NHLBI NIH HHS/ -- R01 HL105194/HL/NHLBI NIH HHS/ -- TCR05004/Telethon/Italy -- England -- Nature. 2013 Feb 7;494(7435):105-10. doi: 10.1038/nature11799. Epub 2013 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Del E. Webb Neuroscience, Aging & Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23354045" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Age of Onset ; Apoptosis/genetics ; Arrhythmogenic Right Ventricular ; Dysplasia/genetics/*metabolism/*pathology/physiopathology ; Cellular Reprogramming ; Culture Media/pharmacology ; Embryoid Bodies/drug effects/physiology ; Energy Metabolism/genetics ; Fatty Acids/metabolism ; Fibroblasts/metabolism/pathology ; Glucose/metabolism ; Glycolysis ; Humans ; Induced Pluripotent Stem Cells/metabolism/*pathology ; Lipogenesis/genetics ; *Models, Biological ; Myocardial Contraction/drug effects ; Myocytes, Cardiac/pathology ; PPAR alpha/metabolism ; PPAR gamma/metabolism ; Phenotype ; Plakophilins/genetics ; Time Factors ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-17
    Description: : We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available. Availability: http://iann.pro/iannviewer Contact: manuel.corpas@tgac.ac.uk
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2013-06-05
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...