ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-12-14
    Description: The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehal, Paramvir -- Satou, Yutaka -- Campbell, Robert K -- Chapman, Jarrod -- Degnan, Bernard -- De Tomaso, Anthony -- Davidson, Brad -- Di Gregorio, Anna -- Gelpke, Maarten -- Goodstein, David M -- Harafuji, Naoe -- Hastings, Kenneth E M -- Ho, Isaac -- Hotta, Kohji -- Huang, Wayne -- Kawashima, Takeshi -- Lemaire, Patrick -- Martinez, Diego -- Meinertzhagen, Ian A -- Necula, Simona -- Nonaka, Masaru -- Putnam, Nik -- Rash, Sam -- Saiga, Hidetoshi -- Satake, Masanobu -- Terry, Astrid -- Yamada, Lixy -- Wang, Hong-Gang -- Awazu, Satoko -- Azumi, Kaoru -- Boore, Jeffrey -- Branno, Margherita -- Chin-Bow, Stephen -- DeSantis, Rosaria -- Doyle, Sharon -- Francino, Pilar -- Keys, David N -- Haga, Shinobu -- Hayashi, Hiroko -- Hino, Kyosuke -- Imai, Kaoru S -- Inaba, Kazuo -- Kano, Shungo -- Kobayashi, Kenji -- Kobayashi, Mari -- Lee, Byung-In -- Makabe, Kazuhiro W -- Manohar, Chitra -- Matassi, Giorgio -- Medina, Monica -- Mochizuki, Yasuaki -- Mount, Steve -- Morishita, Tomomi -- Miura, Sachiko -- Nakayama, Akie -- Nishizaka, Satoko -- Nomoto, Hisayo -- Ohta, Fumiko -- Oishi, Kazuko -- Rigoutsos, Isidore -- Sano, Masako -- Sasaki, Akane -- Sasakura, Yasunori -- Shoguchi, Eiichi -- Shin-i, Tadasu -- Spagnuolo, Antoinetta -- Stainier, Didier -- Suzuki, Miho M -- Tassy, Olivier -- Takatori, Naohito -- Tokuoka, Miki -- Yagi, Kasumi -- Yoshizaki, Fumiko -- Wada, Shuichi -- Zhang, Cindy -- Hyatt, P Douglas -- Larimer, Frank -- Detter, Chris -- Doggett, Norman -- Glavina, Tijana -- Hawkins, Trevor -- Richardson, Paul -- Lucas, Susan -- Kohara, Yuji -- Levine, Michael -- Satoh, Nori -- Rokhsar, Daniel S -- HD-37105/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2157-67.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12481130" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Apoptosis ; Base Sequence ; Cellulose/metabolism ; Central Nervous System/physiology ; Ciona intestinalis/anatomy & histology/classification/*genetics/physiology ; Computational Biology ; Endocrine System/physiology ; Gene Dosage ; Gene Duplication ; Genes ; Genes, Homeobox ; *Genome ; Heart/embryology/physiology ; Immunity/genetics ; Molecular Sequence Data ; Multigene Family ; Muscle Proteins/genetics ; Organizers, Embryonic/physiology ; Phylogeny ; Polymorphism, Genetic ; Proteins/genetics/physiology ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Species Specificity ; Thyroid Gland/physiology ; Urochordata/genetics ; Vertebrates/anatomy & histology/classification/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-01-23
    Description: The origin of new morphological characters is a long-standing problem in evolutionary biology. Novelties arise through changes in development, but the nature of these changes is largely unknown. In butterflies, eyespots have evolved as new pattern elements that develop from special organizers called foci. Formation of these foci is associated with novel expression patterns of the Hedgehog signaling protein, its receptor Patched, the transcription factor Cubitus interruptus, and the engrailed target gene that break the conserved compartmental restrictions on this regulatory circuit in insect wings. Redeployment of preexisting regulatory circuits may be a general mechanism underlying the evolution of novelties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keys, D N -- Lewis, D L -- Selegue, J E -- Pearson, B J -- Goodrich, L V -- Johnson, R L -- Gates, J -- Scott, M P -- Carroll, S B -- F32 GM18162/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):532-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9915699" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Body Patterning ; Butterflies/anatomy & histology/*genetics/growth & development ; DNA-Binding Proteins/genetics/physiology ; *Drosophila Proteins ; *Gene Expression Regulation ; Genes, Insect ; Hedgehog Proteins ; Homeodomain Proteins/genetics/physiology ; Insect Proteins/*genetics/physiology ; Membrane Proteins/genetics/physiology ; Pigmentation ; Receptors, Cell Surface ; Signal Transduction ; Transcription Factors/genetics/physiology ; Transcription, Genetic ; Wings, Animal/anatomy & histology/*growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-07-01
    Description: Butterfly wings display pattern elements of many types and colors. To identify the molecular processes underlying the generation of these patterns, several butterfly cognates of Drosophila appendage patterning genes have been cloned and their expression patterns have been analyzed. Butterfly wing patterns are organized by two spatial coordinate systems. One system specifies positional information with respect to the entire wing field and is conserved between fruit flies and butterflies. A second system, superimposed on the general system and involving several of the same genes, operates within each wing subdivision to elaborate discrete pattern elements. Eyespots, which form from discrete developmental organizers, are marked by Distal-less gene expression. These circular pattern elements appear to be generated by a process similar to, and perhaps evolved from, proximodistal pattern formation in insect appendages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carroll, S B -- Gates, J -- Keys, D N -- Paddock, S W -- Panganiban, G E -- Selegue, J E -- Williams, J A -- New York, N.Y. -- Science. 1994 Jul 1;265(5168):109-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Madison, WI.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7912449" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Butterflies/embryology/*genetics/growth & development ; DNA, Complementary/genetics ; Drosophila/genetics ; *Drosophila Proteins ; *Gene Expression Regulation ; Genes, Homeobox ; *Genes, Insect ; *Homeodomain Proteins ; Insect Hormones/chemistry/genetics ; LIM-Homeodomain Proteins ; Molecular Sequence Data ; Photoreceptor Cells, Invertebrate/*growth & development ; Proto-Oncogene Proteins/chemistry/genetics ; Transcription Factors/chemistry/genetics ; Transcription, Genetic ; Wings, Animal/*growth & development ; Wnt1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2002-05-14
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...