ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-15
    Description: We present calculations of the auroral radio powers expected from exoplanets with magnetospheres driven by an Earth-like magnetospheric interaction with the solar wind. Specifically, we compute the twin cell-vortical ionospheric flows, currents, and resulting radio powers resulting from a Dungey cycle process driven by dayside and nightside magnetic reconnection, as a function of planetary orbital distance and magnetic field strength. We include saturation of the magnetospheric convection, as observed at the terrestrial magnetosphere, and we present power-law approximations for the convection potentials, radio powers and spectral flux densities. We specifically consider a solar-age system and a young (1 Gyr) system. We show that the radio power increases with magnetic field strength for magnetospheres with saturated convection potential, and broadly decreases with increasing orbital distance. We show that the magnetospheric convection at hot Jupiters will be saturated, and thus unable to dissipate the full available incident Poynting flux, such that the magnetic Radiometric Bode's Law (RBL) presents a substantial overestimation of the radio powers for hot Jupiters. Our radio powers for hot Jupiters are ~5–1300 TW for hot Jupiters with field strengths of 0.1–10 B J orbiting a Sun-like star, while we find that competing effects yield essentially identical powers for hot Jupiters orbiting a young Sun-like star. However, in particular, for planets with weaker magnetic fields, our powers are higher at larger orbital distances than given by the RBL, and there are many configurations of planet that are expected to be detectable using SKA.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-05-20
    Description: A high proportion of purebred Hampshire pigs carries the dominant RN- mutation, which causes high glycogen content in skeletal muscle. The mutation has beneficial effects on meat content but detrimental effects on processing yield. Here, it is shown that the mutation is a nonconservative substitution (R200Q) in the PRKAG3 gene, which encodes a muscle-specific isoform of the regulatory gamma subunit of adenosine monophosphate-activated protein kinase (AMPK). Loss-of-function mutations in the homologous gene in yeast (SNF4) cause defects in glucose metabolism, including glycogen storage. Further analysis of the PRKAG3 signaling pathway may provide insights into muscle physiology as well as the pathogenesis of noninsulin-dependent diabetes mellitus in humans, a metabolic disorder associated with impaired glycogen synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milan, D -- Jeon, J T -- Looft, C -- Amarger, V -- Robic, A -- Thelander, M -- Rogel-Gaillard, C -- Paul, S -- Iannuccelli, N -- Rask, L -- Ronne, H -- Lundstrom, K -- Reinsch, N -- Gellin, J -- Kalm, E -- Roy, P L -- Chardon, P -- Andersson, L -- New York, N.Y. -- Science. 2000 May 19;288(5469):1248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Cellulaire, Institut National de la Recherche Agronomique (INRA), 31326 Castanet-Tolosan, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10818001" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Alleles ; Amino Acid Sequence ; Amino Acid Substitution/genetics ; Animals ; Blotting, Northern ; Cloning, Molecular ; DNA, Complementary/isolation & purification ; Gene Expression Regulation, Enzymologic ; Glycogen/*metabolism ; Homozygote ; Humans ; Isoenzymes/biosynthesis/genetics/isolation & purification ; Molecular Sequence Data ; Muscle, Skeletal/*enzymology/metabolism ; Organ Specificity/genetics ; Phenotype ; *Point Mutation ; Protein Kinases/biosynthesis/*genetics/isolation & purification ; Sequence Homology, Amino Acid ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-07-26
    Description: The genome organizations of eight phylogenetically distinct species from five mammalian orders were compared in order to address fundamental questions relating to mammalian chromosomal evolution. Rates of chromosome evolution within mammalian orders were found to increase since the Cretaceous-Tertiary boundary. Nearly 20% of chromosome breakpoint regions were reused during mammalian evolution; these reuse sites are also enriched for centromeres. Analysis of gene content in and around evolutionary breakpoint regions revealed increased gene density relative to the genome-wide average. We found that segmental duplications populate the majority of primate-specific breakpoints and often flank inverted chromosome segments, implicating their role in chromosomal rearrangement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, William J -- Larkin, Denis M -- Everts-van der Wind, Annelie -- Bourque, Guillaume -- Tesler, Glenn -- Auvil, Loretta -- Beever, Jonathan E -- Chowdhary, Bhanu P -- Galibert, Francis -- Gatzke, Lisa -- Hitte, Christophe -- Meyers, Stacey N -- Milan, Denis -- Ostrander, Elaine A -- Pape, Greg -- Parker, Heidi G -- Raudsepp, Terje -- Rogatcheva, Margarita B -- Schook, Lawrence B -- Skow, Loren C -- Welge, Michael -- Womack, James E -- O'brien, Stephen J -- Pevzner, Pavel A -- Lewin, Harris A -- N01-CO-12400/CO/NCI NIH HHS/ -- R01CA-92167/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):613-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA. wmurphy@cvm.tamu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040707" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cats/genetics ; Cattle/genetics ; Centromere/genetics ; Chromosomal Instability ; Chromosome Aberrations ; *Chromosome Breakage ; Chromosome Inversion ; Chromosome Mapping ; Chromosomes, Human/genetics ; Chromosomes, Mammalian/*genetics ; Computational Biology ; Dogs/genetics ; *Evolution, Molecular ; *Genome ; Genome, Human ; Horses/genetics ; Humans ; Mammals/*genetics ; Mice/genetics ; Neoplasms/genetics ; Rats/genetics ; Swine/genetics ; *Synteny ; Telomere/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-16
    Description: For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenen, Martien A M -- Archibald, Alan L -- Uenishi, Hirohide -- Tuggle, Christopher K -- Takeuchi, Yasuhiro -- Rothschild, Max F -- Rogel-Gaillard, Claire -- Park, Chankyu -- Milan, Denis -- Megens, Hendrik-Jan -- Li, Shengting -- Larkin, Denis M -- Kim, Heebal -- Frantz, Laurent A F -- Caccamo, Mario -- Ahn, Hyeonju -- Aken, Bronwen L -- Anselmo, Anna -- Anthon, Christian -- Auvil, Loretta -- Badaoui, Bouabid -- Beattie, Craig W -- Bendixen, Christian -- Berman, Daniel -- Blecha, Frank -- Blomberg, Jonas -- Bolund, Lars -- Bosse, Mirte -- Botti, Sara -- Bujie, Zhan -- Bystrom, Megan -- Capitanu, Boris -- Carvalho-Silva, Denise -- Chardon, Patrick -- Chen, Celine -- Cheng, Ryan -- Choi, Sang-Haeng -- Chow, William -- Clark, Richard C -- Clee, Christopher -- Crooijmans, Richard P M A -- Dawson, Harry D -- Dehais, Patrice -- De Sapio, Fioravante -- Dibbits, Bert -- Drou, Nizar -- Du, Zhi-Qiang -- Eversole, Kellye -- Fadista, Joao -- Fairley, Susan -- Faraut, Thomas -- Faulkner, Geoffrey J -- Fowler, Katie E -- Fredholm, Merete -- Fritz, Eric -- Gilbert, James G R -- Giuffra, Elisabetta -- Gorodkin, Jan -- Griffin, Darren K -- Harrow, Jennifer L -- Hayward, Alexander -- Howe, Kerstin -- Hu, Zhi-Liang -- Humphray, Sean J -- Hunt, Toby -- Hornshoj, Henrik -- Jeon, Jin-Tae -- Jern, Patric -- Jones, Matthew -- Jurka, Jerzy -- Kanamori, Hiroyuki -- Kapetanovic, Ronan -- Kim, Jaebum -- Kim, Jae-Hwan -- Kim, Kyu-Won -- Kim, Tae-Hun -- Larson, Greger -- Lee, Kyooyeol -- Lee, Kyung-Tai -- Leggett, Richard -- Lewin, Harris A -- Li, Yingrui -- Liu, Wansheng -- Loveland, Jane E -- Lu, Yao -- Lunney, Joan K -- Ma, Jian -- Madsen, Ole -- Mann, Katherine -- Matthews, Lucy -- McLaren, Stuart -- Morozumi, Takeya -- Murtaugh, Michael P -- Narayan, Jitendra -- Nguyen, Dinh Truong -- Ni, Peixiang -- Oh, Song-Jung -- Onteru, Suneel -- Panitz, Frank -- Park, Eung-Woo -- Park, Hong-Seog -- Pascal, Geraldine -- Paudel, Yogesh -- Perez-Enciso, Miguel -- Ramirez-Gonzalez, Ricardo -- Reecy, James M -- Rodriguez-Zas, Sandra -- Rohrer, Gary A -- Rund, Lauretta -- Sang, Yongming -- Schachtschneider, Kyle -- Schraiber, Joshua G -- Schwartz, John -- Scobie, Linda -- Scott, Carol -- Searle, Stephen -- Servin, Bertrand -- Southey, Bruce R -- Sperber, Goran -- Stadler, Peter -- Sweedler, Jonathan V -- Tafer, Hakim -- Thomsen, Bo -- Wali, Rashmi -- Wang, Jian -- Wang, Jun -- White, Simon -- Xu, Xun -- Yerle, Martine -- Zhang, Guojie -- Zhang, Jianguo -- Zhang, Jie -- Zhao, Shuhong -- Rogers, Jane -- Churcher, Carol -- Schook, Lawrence B -- 095908/Wellcome Trust/United Kingdom -- 249894/European Research Council/International -- 5 P41 LM006252/LM/NLM NIH HHS/ -- 5 P41LM006252/LM/NLM NIH HHS/ -- BB/E010520/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010520/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010768/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E011640/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G004013/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H005935/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025328/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0900950/Medical Research Council/United Kingdom -- P20-RR017686/RR/NCRR NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- R13 RR020283A/RR/NCRR NIH HHS/ -- R13 RR032267A/RR/NCRR NIH HHS/ -- R21 DA027548/DA/NIDA NIH HHS/ -- R21 HG006464/HG/NHGRI NIH HHS/ -- T32 AI083196/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):393-8. doi: 10.1038/nature11622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands. martien.groenen@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Demography ; Genome/*genetics ; Models, Animal ; Molecular Sequence Data ; *Phylogeny ; Population Dynamics ; Sus scrofa/*classification/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 169 (1990), S. 8-14 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0888-7543
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1434-4475
    Keywords: Keywords. Acetophenone; Asymmetric induction; Modified borane reduction; Proline.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Zusammenfassung.  Acetophenon, 2,2-Dimethylcyclopentanon, 3,3-Dimethyl-2-butanon, 3-Methyl-2-butanon und 2-Pentanon wurden mit Hilfe von Boran in Gegenwart von (S)-Prolin und (S)-Phenylalanin in guten bis sehr guten Ausbeuten reduziert, wobei vornehmlich (32–86%ee) die (R)-konfigurierten Alkohole erhalten wurden.
    Notes: Summary.  Acetophenone, 2,2-dimethylcyclopentanone, 3,3-dimethyl-2-butanone, 3-methyl-2-butanone, and 2-pentanone were reduced with (S)-proline- and (S)-phenylalanine-mediated borane in good to very good yields giving predominantly (32–86% ee) alcohols of (R)-configuration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Numerous loci can be amplified by PARM-PCR on 300 sorted chromosomes in low-stringency conditions (annealing at 30°C during the two first cycles) to produce a probe that can be used in FISH painting experiments. We demonstrate that, depending on the primer chosen for the amplification, patterns of different quality can be obtained. In order to design a primer that allows amplification of coding sequences, we have shown that motifs of at least seven glutamic acid repeats (GAG or GAA codons) are present in human proteins more frequently than expected. Moreover, these repeats do not correspond to triplet expansion and can be conserved between species. Using probes prepared from sorted chromosomes with (GAG)7 primer, we were able to achieve homologous FISH painting on human, porcine, ovine, and bovine species, and bidirectional heterologous FISH painting between human and porcine species. As an example, using probes for human Chromosome (Chr) 19 and porcine Chrs 1 and 6, we clearly defined the regional homologies existing between those chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. To increase the number of Type I markers that are directly informative for comparative mapping, 58 anchorage markers, TOASTs (Traced Orthologous Amplified Sequence Tags), were mapped in pig. With specific consensus primers, 76 TOASTs were tested in pig: 50 were regionally localized in pig on a somatic cell hybrid panel (SCHP), and 51 were mapped on the whole genome, INRA/University of Minnesota porcine Radiation Hybrid panel (IMpRH). Comparison of marker positions on RH and cytogenetic maps indicated general concordance except for two chromosomal regions. For RH mapping, all markers, apart from one, were significantly linked (LOD 〉 4.8) to a marker of the first-generation radiation hybrid map. Localization of new markers on the initial map is necessary for drawing a framework map as shown for Chromosome Sscr 14. The addition of four TOASTs has enabled us to propose an improved map, using a threshold likelihood ratio of 1000/1. At the whole-genome level, this work significantly increased (by 50%) the number of precisely mapped genes on the porcine RH map and confirmed that the IMpRH panel is a valuable tool for high-resolution gene mapping in pig. Porcine PCR products were sequenced and compared with human sequences to verify their identity. Most of the localizations made it possible to either confirm or refine the previous comparative data between humans and pigs obtained through heterologous chromosomal painting or gene mapping. Moreover, the use of TOASTs in mapping studies appears to be a complement to other strategies using CATS, human ESTs, or heterologous FISH with BACs which had already been applied to improve the gene density of comparative genomic maps for mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...