ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-04
    Description: It is estimated that pneumonia is responsible for 15% of childhood deaths worldwide. Recent research has shown that hypoxia and malnutrition are strong predictors of mortality in children hospitalized for pneumonia. It is estimated that 15% of children under 5 who are hospitalized for pneumonia have hypoxaemia and that around 1.5 million children with severe pneumonia require oxygen treatment each year. We developed a deterministic compartmental model that links the care pathway to disease progression to assess the impact of introducing pulse oximetry as a prognostic tool to distinguish severe from non-severe pneumonia in under-5 year olds across 15 countries with the highest burden worldwide. We estimate that, assuming access to supplemental oxygen, pulse oximetry has the potential to avert up to 148,000 deaths if implemented across the 15 countries. By contrast, integrated management of childhood illness alone has a relatively small impact on mortality owing to its low sensitivity. Pulse oximetry can significantly increase the incidence of correctly treated severe cases as well as reduce the incidence of incorrect treatment with antibiotics. We also found that the combination of pulse oximetry with integrated management of childhood illness is highly cost-effective, with median estimates ranging from US$2.97 to $52.92 per disability-adjusted life year averted in the 15 countries analysed. This combination of substantial burden reduction and favourable cost-effectiveness makes pulse oximetry a promising candidate for improving the prognosis for children with pneumonia in resource-poor settings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Floyd, Jessica -- Wu, Lindsey -- Hay Burgess, Deborah -- Izadnegahdar, Rasa -- Mukanga, David -- Ghani, Azra C -- Medical Research Council/United Kingdom -- England -- Nature. 2015 Dec 3;528(7580):S53-9. doi: 10.1038/nature16043.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK. ; Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK. ; The Bill &Melinda Gates Foundation, 500 Fifth Avenue North, Seattle, Washington 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26633766" target="_blank"〉PubMed〈/a〉
    Keywords: Anoxia/complications/diagnosis ; Child ; Cost-Benefit Analysis ; Disease Progression ; Global Health ; Health Resources/*economics ; Humans ; Incidence ; *Oximetry/economics/utilization ; Oxygen/therapeutic use ; Pneumonia/*diagnosis/economics/*mortality/therapy ; Sensitivity and Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...