ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-16
    Description: Large-scale biomass plantations (BPs) are often considered a feasible and safe climate engineering proposal for extracting carbon from the atmosphere and, thereby, reducing global mean temperatures. However, the capacity of such terrestrial carbon dioxide removal (tCDR) strategies and their larger Earth system impacts remain to be comprehensively studied—even more so under higher carbon emissions and progressing climate change. Here, we use a spatially explicit process-based biosphere model to systematically quantify the potentials and trade-offs of a range of BP scenarios dedicated to tCDR, representing different assumptions about which areas are convertible. Based on a moderate CO 2 concentration pathway resulting in a global mean warming of 2.5 °C above preindustrial level by the end of this century—similar to the Representative Concentration Pathway (RCP) 4.5—we assume tCDR to be implemented when a warming of 1.5 °C is reached in year 2038. Our results show that BP...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-06
    Description: This paper presents a quantitative estimation of the impact of reservoirs on discharge and irrigation water supply during the 20th century at global, continental, and river basin scale. Compared to a natural situation the combined effect of reservoir operation and irrigation extractions decreased mean annual discharge to oceans and significantly changed the timing of this discharge. For example, in Europe, May discharge decreased by 10%, while in February it increased by 8%. At the end of the 20th century, reservoir operations and irrigation extractions decreased annual global discharge by about 2.1% (930 km3 yr−1). Simulation results show that reservoirs contribute significantly to irrigation water supply in many regions. Basins that rely heavily on reservoir water are the Colorado and Columbia River basins in the United States and several large basins in India, China, and central Asia (e.g., in the Krishna and Huang He basins, reservoirs more than doubled surface water supply). Continents gaining the most are North America, Africa, and Asia, where reservoirs supplied 57, 22, and 360 km3 yr−1 respectively between 1981–2000, which is in all cases 40% more than the availability in the situation without reservoirs. Globally, the irrigation water supply from reservoirs increased from around 18 km3 yr−1 (adding 5% to surface water supply) at the beginning of the 20th century to 460 km3 yr−1 (adding almost 40% to surface water supply) at the end of the 20th century. The analysis is performed using a newly developed and validated reservoir operation scheme within a global-scale hydrology and vegetation model (LPJmL).
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-16
    Description: As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected f...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-10-12
    Description: More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land-a key diagnostic criterion of the effects of climate change and variability-remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 +/- 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Nino event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jung, Martin -- Reichstein, Markus -- Ciais, Philippe -- Seneviratne, Sonia I -- Sheffield, Justin -- Goulden, Michael L -- Bonan, Gordon -- Cescatti, Alessandro -- Chen, Jiquan -- de Jeu, Richard -- Dolman, A Johannes -- Eugster, Werner -- Gerten, Dieter -- Gianelle, Damiano -- Gobron, Nadine -- Heinke, Jens -- Kimball, John -- Law, Beverly E -- Montagnani, Leonardo -- Mu, Qiaozhen -- Mueller, Brigitte -- Oleson, Keith -- Papale, Dario -- Richardson, Andrew D -- Roupsard, Olivier -- Running, Steve -- Tomelleri, Enrico -- Viovy, Nicolas -- Weber, Ulrich -- Williams, Christopher -- Wood, Eric -- Zaehle, Sonke -- Zhang, Ke -- England -- Nature. 2010 Oct 21;467(7318):951-4. doi: 10.1038/nature09396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. mjung@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20935626" target="_blank"〉PubMed〈/a〉
    Keywords: Artificial Intelligence ; Atmosphere/*chemistry ; Fresh Water/*analysis ; *Global Warming/statistics & numerical data ; History, 20th Century ; History, 21st Century ; Humidity ; Plant Transpiration/*physiology ; Reproducibility of Results ; Seasons ; Soil/analysis ; Uncertainty ; Volatilization ; *Water Cycle
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-13
    Description: Jaramillo and Destouni claim that freshwater consumption is beyond the planetary boundary, based on high estimates of water cycle components, different definitions of water consumption, and extrapolation from a single case study. The difference from our analysis, based on mainstream assessments of global water consumption, highlights the need for clearer definitions of water cycle components and improved models and databases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerten, Dieter -- Rockstrom, Johan -- Heinke, Jens -- Steffen, Will -- Richardson, Katherine -- Cornell, Sarah -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1217. doi: 10.1126/science.aab0031. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Domain of Earth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. gerten@pik-potsdam.de. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. ; Research Domain of Earth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. International Livestock Research Institute, Nairobi, 00100 Kenya. Commonwealth Scientific and Industrial Research Organization, St. Lucia, QLD 4067, Australia. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia. ; Center for Macroecology, Evolution, and Climate, University of Copenhagen, Natural History Museum of Denmark, 2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068844" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-17
    Description: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries-climate change and biosphere integrity-have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steffen, Will -- Richardson, Katherine -- Rockstrom, Johan -- Cornell, Sarah E -- Fetzer, Ingo -- Bennett, Elena M -- Biggs, Reinette -- Carpenter, Stephen R -- de Vries, Wim -- de Wit, Cynthia A -- Folke, Carl -- Gerten, Dieter -- Heinke, Jens -- Mace, Georgina M -- Persson, Linn M -- Ramanathan, Veerabhadran -- Reyers, Belinda -- Sorlin, Sverker -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):1259855. doi: 10.1126/science.1259855. Epub 2015 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia. will.steffen@anu.edu.au. ; Center for Macroecology, Evolution, and Climate, University of Copenhagen, Natural History Museum of Denmark, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. ; Department of Natural Resource Sciences and McGill School of Environment, McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Centre for Studies in Complexity, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa. ; Center for Limnology, University of Wisconsin, 680 North Park Street, Madison WI 53706 USA. ; Alterra Wageningen University and Research Centre, P.O. Box 47, 6700AA Wageningen, Netherlands. Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands. ; Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, SE-10405 Stockholm, Sweden. ; Research Domain Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A62, 14473 Potsdam, Germany. ; Research Domain Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A62, 14473 Potsdam, Germany. International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya. CSIRO (Commonwealth Scientific and Industrial Research Organization), St. Lucia, QLD 4067, Australia. ; Centre for Biodiversity and Environment Research (CBER), Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK. ; Stockholm Environment Institute, Linnegatan 87D, SE-10451 Stockholm, Sweden. ; Scripps Institution of Oceanography, University of California at San Diego, 8622 Kennel Way, La Jolla, CA 92037 USA. TERI (The Energy and Resources Institute) University, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi 110070, India. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Natural Resources and the Environment, CSIR, P.O. Box 320, Stellenbosch 7599, South Africa. ; Division of History of Science, Technology and Environment, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25592418" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Fresh Water ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-18
    Description: Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of diff...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-05
    Description: Human activity has a profound influence on river discharges, hydrological extremes and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the simulation of mean, high- and low-flows. The analysis is performed for 471 gauging stations across the globe for the period 1971–2010. We find that the inclusion of HIP improves the performance of the GHMs, both in managed and near-natural catchments. For near-natural catchments, the improvement in performance results from improvements in incoming discharges from upstream managed catchments. This finding is robust across the GHMs, although the level of improvement and the reasons for it vary greatly. The inclusion of HIP leads to a significant decrease in the bias of the long-term mean monthly discharge in 36%–73% of the studied catchments, and an improvement in the modeled hydrological varia...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-10
    Description: Description unavailable
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-05
    Description: Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and...
    Keywords: Global Climate Impacts: A Cross-Sector, Multi-Model Assessment Special Feature, Sustainability Science
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...