ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Tectonics, Berlin, Schweizerbart'sche Verlagsbuchhandlung, vol. 24, no. 5, pp. 289-301, pp. TC5009, (ISSN 0016-8548, ISBN 3-510-50045-8)
    Publication Date: 2005
    Keywords: Tectonics ; Plate tectonics ; Gravimetry, Gravitation ; Stress ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Modelling ; Jimenez
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Computers and Geosciences, Warszawa, Inst. Electrical & Electronics Engineers, vol. 23, no. 9, pp. 993-1003, pp. 2121, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1997
    Keywords: Tectonics ; software ; Inelastic ; Geol. aspects
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005
    Keywords: CC 1/3 ; Coordinating Committee ; TOPO-EUROPE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004
    Keywords: Three dimensional ; Strength ; EUROPROBE (Geol. and Geophys. in eastern Europe) ; Modelling ; Subduction zone ; Tectonics ; Romania ; Gravimetry, Gravitation ; EPSL
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Tectonic extension of continental lithosphere creates accommodation space in which sediments are deposited. Climate‐driven processes provide the mechanism by which mass is detached from hillslopes and sediments are transported into this accommodation space. These two forcings, climate and tectonics, act together to create either endorheic (internally drained) or exorheic (externally drained) rift basins. Here we use a large‐scale dynamic landscape evolution‐tectonics model to understand the contribution of tectonic processes in endorheic‐exorheic transitions. In the model, extension results in opening of an asymmetric half‐graben along a listric normal fault. Rift opening occurs in the models in wet, temperate, or semi‐arid climates where runoff and evapotranspiration are varied. Our numerical experiments show that slow rift‐opening rates, a slowing‐down of rift opening, or increase of headwater topography (e.g., upstream epeirogenic uplift), are tectonic situations that can cause a transition from an endorheic to an exorheic drainage state in a rift basin. Our results also show that wet climate conditions lead to a permanent exorheism that persists regardless of rift opening rates. In semi‐arid climates, endorheic conditions are favored, and may last for the duration of rifting except for when rift opening is very slow. These results form an interpretive framework to study endorheic and exorheic drainage systems in natural continental rifts. In the slow‐opening Rio Grande rift, the endorheic‐exorheic transition may have occurred without dramatic climate changes. Lake‐level variations in East African rift basins are predicted by our models to result from variations in climate.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-16
    Description: The extent of the area accommodating convergence between the African and Iberian plates, how this convergence is partitioned between crust and mantle, and the role of the plate boundary in accommodating deformation are not well-understood subjects. We calculate the structure of the lithosphere derived from its density distribution along a profile running from the Tagus Abyssal Plain to the Sahara Platform and crossing the Gorringe Bank, the NW Moroccan margin, and the Atlas Mountains. The model is based on the integration of gravity, geoid, elevation, and heat flow data and on the crustal structure across the NW Moroccan margin derived from reflection and wide-angle seismic data. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thickening beneath the margin (LAB 〉 200 km depth) followed by thinning beneath the Atlas Mountains (LAB ∼90 km depth). At crustal levels the Iberia-Africa convergence is sparsely accommodated in a ∼950 km wide area and localized in the Atlas and Gorringe regions, with an inferred shortening of ∼50 km. In contrast, mantle thickening accommodates a 400 km wide region, thus advocating for a decoupled crustal-mantle mechanical response. A combination of mantle underthrusting due to oblique convergence, together with a viscous dripping fed by lateral mantle dragging, can explain the imaged lithospheric structure. The model is consistent with crustal shortening estimates and with the accommodation of part of the Iberia-Africa convergence farther NW of the Gorringe Bank and/or off the strike of the profile.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-12-17
    Description: The Mediterranean Sea became disconnected from the world's oceans and mostly desiccated by evaporation about 5.6 million years ago during the Messinian salinity crisis. The Atlantic waters found a way through the present Gibraltar Strait and rapidly refilled the Mediterranean 5.33 million years ago in an event known as the Zanclean flood. The nature, abruptness and evolution of this flood remain poorly constrained. Borehole and seismic data show incisions over 250 m deep on both sides of the Gibraltar Strait that have previously been attributed to fluvial erosion during the desiccation. Here we show the continuity of this 200-km-long channel across the strait and explain its morphology as the result of erosion by the flooding waters, adopting an incision model validated in mountain rivers. This model in turn allows us to estimate the duration of the flood. Although the available data are limited, our findings suggest that the feedback between water flow and incision in the early stages of flooding imply discharges of about 10(8) m(3) s(-1) (three orders of magnitude larger than the present Amazon River) and incision rates above 0.4 m per day. Although the flood started at low water discharges that may have lasted for up to several thousand years, our results suggest that 90 per cent of the water was transferred in a short period ranging from a few months to two years. This extremely abrupt flood may have involved peak rates of sea level rise in the Mediterranean of more than ten metres per day.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia-Castellanos, D -- Estrada, F -- Jimenez-Munt, I -- Gorini, C -- Fernandez, M -- Verges, J -- De Vicente, R -- England -- Nature. 2009 Dec 10;462(7274):778-81. doi: 10.1038/nature08555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Ciencies de la Terra Jaume Almera, CSIC, Sole i Sabaris s/n, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010684" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-12-16
    Description: The Messinian salinity crisis (5.96 to 5.33 million years ago) was caused by reduced water inflow from the Atlantic Ocean to the Mediterranean Sea resulting in widespread salt precipitation and a decrease in Mediterranean sea level of about 1.5 kilometres due to evaporation. The reduced connectivity between the Atlantic and the Mediterranean at the time of the salinity crisis is thought to have resulted from tectonic uplift of the Gibraltar arc seaway and global sea-level changes, both of which control the inflow of water required to compensate for the hydrological deficit of the Mediterranean. However, the different timescales on which tectonic uplift and changes in sea level occur are difficult to reconcile with the long duration of the shallow connection between the Mediterranean and the Atlantic needed to explain the large amount of salt precipitated. Here we use numerical modelling to show that seaway erosion caused by the Atlantic inflow could sustain such a shallow connection between the Atlantic and the Mediterranean by counteracting tectonic uplift. The erosion and uplift rates required are consistent with previous mountain erosion studies, with the present altitude of marine sediments in the Gibraltar arc and with geodynamic models suggesting a lithospheric slab tear underneath the region. The moderate Mediterranean sea-level drawdown during the early stages of the Messinian salinity crisis can be explained by an uplift of a few millimetres per year counteracted by similar rates of erosion due to Atlantic inflow. Our findings suggest that the competition between uplift and erosion can result in harmonic coupling between erosion and the Mediterranean sea level, providing an alternative mechanism for the cyclicity observed in early salt precipitation deposits and calling into question previous ideas regarding the timing of the events that occurred during the Messinian salinity crisis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia-Castellanos, D -- Villasenor, A -- England -- Nature. 2011 Dec 14;480(7377):359-63. doi: 10.1038/nature10651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Ciencias de la Tierra Jaume Almera, CSIC, Sole i Sabaris s/n, 08028 Barcelona, Spain. danielgc@ictja.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22170684" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-31
    Description: SUMMARY The aim of this work is to propose a first-order estimate of the crustal and lithospheric mantle geometry of the Arabia–Eurasia collision zone and to separate the measured Bouguer anomaly into its regional and local components. The crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis. Our results show that Moho depth varies from ∼42 km at the Mesopotamian–Persian Gulf foreland basin to ∼60 km below the High Zagros. The lithosphere is thicker beneath the foreland basin (∼200 km) and thinner underneath the High Zagros and Central Iran (∼140 km). Most of this lithospheric mantle thinning is accommodated under the Zagros mountain belt coinciding with the suture between two different mantle domains on the Sanandaj–Sirjan Zone. The regional gravity field is obtained by calculating the gravimetric response of the 3-D crustal and lithospheric mantle structure obtained by combining elevation and geoid data. The calculated regional Bouguer anomaly differs noticeably from those obtained by filtering or just isostatic methods. The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Deep basins and areas with salt deposits are characterized by negative values (∼−20 mGal), whereas the positive values are related to igneous and ophiolite complexes and shallow basement depths (∼20 mGal).
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract The modes in which the lithosphere deforms during continental collision and the mechanisms involved are not well understood. While continental subduction and mantle delamination are often invoked in tectonophysical studies, these processes are difficult to be confirmed in more complex tectonic regions such as the Gibraltar Arc. We study the present‐day density and compositional structure of the lithosphere along a transect running from S Iberia to N Africa crossing the western Gibraltar Arc. This region is located in the westernmost continental segment of the African‐Eurasian plates, characterized by a diffuse transpressive plate boundary. An integrated and self‐consistent geophysical‐petrological methodology is used to model the lithosphere structure variations and the thermophysical properties of the upper mantle. The crustal structure is mainly constrained by seismic experiments and geological data, whereas the composition of the lithospheric mantle is constrained by xenolith data. The results show large lateral variations in the topography of the lithosphere‐asthenosphere boundary (LAB). We distinguish different chemical lithospheric mantle domains that reproduce the main trends of the geophysical observables and the modelled P‐ and S‐wave seismic velocities. A sublithospheric body colder than the surrounding mantle is needed beneath the Betics‐Rif to adjust the measured potential fields. We link this body to the Iberian slab localized just to the east of the profile and having some effect on the geoid and Bouguer anomalies. Local isostasy allows explaining most of the topography, but an elastic thickness higher than 10 km is needed to explain local misfits between the Atlas and the Rif Mountains.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...