ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-10
    Description: Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D 3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D 3 metabolite, calcitriol (1,25-dihydroxyvitamin D 3 ; 1,25(OH) 2 D 3 ), modulates responses to inflammation; however this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood. J. Cell. Physiol. © 2014 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-26
    Description: The radical S-adenosylmethionine (SAM) enzyme HydG lyses free l-tyrosine to produce CO and CN(-) for the assembly of the catalytic H cluster of FeFe hydrogenase. We used electron paramagnetic resonance spectroscopy to detect and characterize HydG reaction intermediates generated with a set of (2)H, (13)C, and (15)N nuclear spin-labeled tyrosine substrates. We propose a detailed reaction mechanism in which the radical SAM reaction, initiated at an N-terminal 4Fe-4S cluster, generates a tyrosine radical bound to a C-terminal 4Fe-4S cluster. Heterolytic cleavage of this tyrosine radical at the Calpha-Cbeta bond forms a transient 4-oxidobenzyl (4OB(*)) radical and a dehydroglycine bound to the C-terminal 4Fe-4S cluster. Electron and proton transfer to this 4OB(*) radical forms p-cresol, with the conversion of this dehydroglycine ligand to Fe-bound CO and CN(-), a key intermediate in the assembly of the 2Fe subunit of the H cluster.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuchenreuther, Jon M -- Myers, William K -- Stich, Troy A -- George, Simon J -- Nejatyjahromy, Yaser -- Swartz, James R -- Britt, R David -- R01 GM104543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):472-5. doi: 10.1126/science.1241859.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159045" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics ; Carbon Monoxide/chemistry ; Catalysis ; Catalytic Domain ; Hydrogenase/*chemistry ; Iron-Sulfur Proteins/*chemistry/genetics ; Ligands ; S-Adenosylmethionine/chemistry ; Shewanella/*enzymology ; Tyrosine/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-25
    Description: Three iron-sulfur proteins--HydE, HydF, and HydG--play a key role in the synthesis of the [2Fe](H) component of the catalytic H-cluster of FeFe hydrogenase. The radical S-adenosyl-L-methionine enzyme HydG lyses free tyrosine to produce p-cresol and the CO and CN(-) ligands of the [2Fe](H) cluster. Here, we applied stopped-flow Fourier transform infrared and electron-nuclear double resonance spectroscopies to probe the formation of HydG-bound Fe-containing species bearing CO and CN(-) ligands with spectroscopic signatures that evolve on the 1- to 1000-second time scale. Through study of the (13)C, (15)N, and (57)Fe isotopologs of these intermediates and products, we identify the final HydG-bound species as an organometallic Fe(CO)2(CN) synthon that is ultimately transferred to apohydrogenase to form the [2Fe](H) component of the H-cluster.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514031/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514031/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuchenreuther, Jon M -- Myers, William K -- Suess, Daniel L M -- Stich, Troy A -- Pelmenschikov, Vladimir -- Shiigi, Stacey A -- Cramer, Stephen P -- Swartz, James R -- Britt, R David -- George, Simon J -- GM072623/GM/NIGMS NIH HHS/ -- GM65440/GM/NIGMS NIH HHS/ -- R01 GM065440/GM/NIGMS NIH HHS/ -- R01 GM104543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):424-7. doi: 10.1126/science.1246572.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458644" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Catalysis ; *Catalytic Domain ; Hydrogenase/*chemistry ; Iron Carbonyl Compounds/*metabolism ; Iron-Sulfur Proteins/*chemistry ; Shewanella putrefaciens/enzymology ; Spectroscopy, Fourier Transform Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-12-31
    Description: Many of the particles currently suspended in the martian atmosphere are magnetic, with an average saturation magnetization of about 4 A. m2/kg (amperes times square meters per kilogram). The particles appear to consist of claylike aggregates stained or cemented with ferric oxide (Fe2O3); at least some of the stain and cement is probably maghemite (gamma-Fe2O3). The presence of the gamma phase would imply that Fe2+ ions leached from the bedrock, passing through a state as free Fe2+ ions dissolved in liquid water. These particles could be a freeze-dried precipitate from ground water poured out on the surface. An alternative is that the magnetic particles are titanomagnetite occurring in palagonite and inherited directly from a basaltic precursor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hviid, S F -- Madsen, M B -- Gunnlaugsson, H P -- Goetz, W -- Knudsen, J M -- Hargraves, R B -- Smith, P -- Britt, D -- Dinesen, A R -- Mogensen, C T -- Olsen, M -- Pedersen, C T -- Vistisen, L -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1768-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oersted Laboratory, Niels Bohr Institute for Astronomy, Physics, and Geophysics, University of Copenhagen, Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388172" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Extraterrestrial Environment ; Ferric Compounds ; Ferrosoferric Oxide ; Iron ; *Magnetics ; *Mars ; Minerals ; Oxides ; Silicates ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-31
    Description: Controlling the structure of colloidal nanocrystals (NCs) is key to the generation of their complex functionality. This requires an understanding of the NC surface at the atomic level. The structure of colloidal PbS NCs passivated with oleic acid has been studied theoretically and experimentally. We show the existence of surface OH(-) groups, which play a key role in stabilizing the PbS(111) facets, consistent with x-ray photoelectron spectroscopy as well as other spectroscopic and chemical experiments. The role of water in the synthesis process is also revealed. Our model, along with existing observations of NC surface termination and passivation by ligands, helps to explain and predict the properties of NCs and their assemblies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zherebetskyy, Danylo -- Scheele, Marcus -- Zhang, Yingjie -- Bronstein, Noah -- Thompson, Christopher -- Britt, David -- Salmeron, Miquel -- Alivisatos, Paul -- Wang, Lin-Wang -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1380-4. doi: 10.1126/science.1252727. Epub 2014 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Applied Science and Technology Graduate Program, University of California at Berkeley, Berkeley, CA 94720, USA. ; Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA. ; The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. lwwang@lbl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876347" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-08-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Britt, R David -- Oyala, Paul H -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):736. doi: 10.1126/science.1258008.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Davis, CA 95616, USA. rdbritt@ucdavis.edu. ; Department of Chemistry, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124415" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Cyanobacteria/*chemistry ; Oxygen/*chemistry ; Photosystem II Protein Complex/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-27
    Description: Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506712/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506712/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yong-Gang -- Cohen, Susan E -- Phong, Connie -- Myers, William K -- Kim, Yong-Ick -- Tseng, Roger -- Lin, Jenny -- Zhang, Li -- Boyd, Joseph S -- Lee, Yvonne -- Kang, Shannon -- Lee, David -- Li, Sheng -- Britt, R David -- Rust, Michael J -- Golden, Susan S -- LiWang, Andy -- AI081982/AI/NIAID NIH HHS/ -- AI101436/AI/NIAID NIH HHS/ -- GM062419/GM/NIGMS NIH HHS/ -- GM100116/GM/NIGMS NIH HHS/ -- GM107521/GM/NIGMS NIH HHS/ -- R01 GM062419/GM/NIGMS NIH HHS/ -- R01 GM100116/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):324-8. doi: 10.1126/science.1260031. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Natural Sciences, University of California, Merced, CA 95343, USA. ; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry, University of California, Davis, CA 95616, USA. ; School of Natural Sciences, University of California, Merced, CA 95343, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. ; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. ; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; School of Natural Sciences, University of California, Merced, CA 95343, USA. Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA. Health Sciences Research Institute, University of California, Merced, CA 95343, USA. aliwang@ucmerced.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113641" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins/*chemistry/genetics/*metabolism ; Phosphorylation ; Protein Folding ; Protein Structure, Secondary ; Synechococcus/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-0794
    Keywords: Coma ; comets ; Deep Space 1 ; nucleus ; spacecraft exploration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract NASA's Deep Space 1 (DS1) spacecraft successfully encountered comet 19P/Borrelly near perihelion and the Miniature Integrated Camera and Spectrometer (MICAS) imaging system onboard DS1 returned the first high-resolution images of a Jupiter-family comet nucleus and surrounding environment. The images span solar phase angles from 88° to 52°, providing stereoscopic coverage of the dust coma and nucleus. Numerous surface features are revealed on the 8-km long nucleus in the highest resolution images(47–58 m pixel). A smooth, broad basin containing brighter regions and mesa-likestructures is present in the central part of the nucleus that seems to be the source ofjet-like dust features seen in the coma. High ridges seen along the jagged terminator lead to rugged terrain on both ends of the nucleus containing dark patches and smaller series of parallel grooves. No evidence of impact craters with diameters larger thanabout 200-m are present, indicating a young and active surface. The nucleus is very dark with albedo variations from 0.007 to 0.035. Short-wavelength, infrared spectra from 1.3 to 2.6 μm revealed a hot, dry surface consistent with less than about10% actively sublimating. Two types of dust features are seen: broad fans and highlycollimated “jets” in the sunward hemisphere that can be traced to the surface. The source region of the main jet feature, which resolved into at least three smaller “jets” near the surface, is consistent with an area around the rotation pole that is constantly illuminated by the sun during the encounter. Within a few nuclear radii, entrained dustis rapidly accelerated and fragmented and geometrical effects caused from extended source regions are present, as evidenced in radial intensity profiles centered on the jet features that show an increase in source strength with increasing cometocentric distance. Asymmetries in the dust from dayside to nightside are pronounced and may show evidence of lateral flow transporting dust to structures observed in the nightside coma. A summary of the initial results of the Deep Space 1 Mission is provided, highlighting the new knowledge that has been gained thus far.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-11-30
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...