ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-15
    Description: Confidence in the use of Earth observations for monitoring essential climate variables (ECVs) relies on the validation of satellite calibration accuracy to within a well-defined uncertainty. The gap analysis for integrated atmospheric ECV climate monitoring (GAIA-CLIM) project investigated the calibration/validation of satellite data sets using non-satellite reference data. Here, we explore the role of numerical weather prediction (NWP) frameworks for the assessment of several meteorological satellite sensors: the advanced microwave scanning radiometer 2 (AMSR2), microwave humidity sounder-2 (MWHS-2), microwave radiation imager (MWRI), and global precipitation measurement (GPM) microwave imager (GMI). We find departures (observation-model differences) are sensitive to instrument calibration artefacts. Uncertainty in surface emission is identified as a key gap in our ability to validate microwave imagers quantitatively in NWP. The prospects for NWP-based validation of future instruments are considered, taking as examples the microwave sounder (MWS) and infrared atmospheric sounding interferometer-next generation (IASI-NG) on the next generation of European polar-orbiting satellites. Through comparisons with reference radiosondes, uncertainties in NWP fields can be estimated in terms of equivalent top-of-atmosphere brightness temperature. We find NWP-sonde differences are consistent with a total combined uncertainty of 0.15 K for selected temperature sounding channels, while uncertainties for humidity sounding channels typically exceed 1 K.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-01
    Print ISSN: 0256-1530
    Electronic ISSN: 1861-9533
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2019-05-16
    Description: The contribution of deep convection to the amount of water vapour and ice in the tropical tropopause layer (TTL) from the tropical upper troposphere (UT; around 146 hPa) to the tropopause level (TL; around 100 hPa) is investigated. Ice water content (IWC) and water vapour (WV) measured in the UT and the TL by the Microwave Limb Sounder (MLS; Version 4.2) are compared to the precipitation (Prec) measured by the Tropical Rainfall Measurement Mission (TRMM; Version 007). The two datasets, gridded within 2∘ × 2∘ horizontal bins, have been analysed during the austral convective season, December, January, and February (DJF), from 2004 to 2017. MLS observations are performed at 01:30 and 13:30 local solar time, whilst the Prec dataset is constructed with a time resolution of 1 h. The new contribution of this study is to provide a much more detailed picture of the diurnal variation of ice than is provided by the very limited (two per day) MLS observations. Firstly, we show that IWC represents 70 % and 50 % of the total water in the tropical UT and TL, respectively, and that Prec is spatially highly correlated with IWC in the UT (Pearson's linear coefficient R=0.7). We propose a method that uses Prec as a proxy for deep convection bringing ice up to the UT and TL during the growing stage of convection, in order to estimate the amount of ice injected into the UT and the TL, respectively. We validate the method using ice measurements from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) during the period DJF 2009–2010. Next, the diurnal cycle of injection of IWC into the UT and the TL by deep convection is calculated by the difference between the maximum and the minimum in the estimated diurnal cycle of IWC in these layers and over selected convective zones. Six tropical highly convective zones have been chosen: South America, South Africa, Pacific Ocean, Indian Ocean, and the Maritime Continent region, split into land (MariCont-L) and ocean (MariCont-O). IWC injection is found to be 2.73 and 0.41 mg m−3 over tropical land in the UT and TL, respectively, and 0.60 and 0.13 mg m−3 over tropical ocean in the UT and TL, respectively. The MariCont-L region has the greatest ice injection in both the UT and TL (3.34 and 0.42–0.56 mg m−3, respectively). The MariCont-O region has less ice injection than MariCont-L (0.91 mg m−3 in the UT and 0.16–0.34 mg m−3 in TL) but has the highest diurnal minimum value of IWC in the TL (0.34–0.37 mg m−3) among all oceanic zones.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-07
    Description: The characterisation of errors and uncertainties in numerical weather prediction (NWP) model fields is a major challenge that is addressed as part of the Horizon 2020 Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring (GAIA-CLIM) project. In that regard, observations from the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) radiosondes are being used at the Met Office and European Centre for Medium-Range Weather Forecasts (ECMWF) to assess errors and uncertainties associated with model data. The software introduced in this study and referred to as the GRUAN processor has been developed to collocate GRUAN radiosonde profiles and NWP model fields, simulate top-of-atmosphere brightness temperature at frequencies used by space-borne instruments, and propagate GRUAN uncertainties in that simulation. A mathematical framework used to estimate and assess the uncertainty budget of the comparison of simulated brightness temperature is also proposed. A total of 1 year of GRUAN radiosondes and matching NWP fields from the Met Office and ECMWF have been processed and analysed for the purposes of demonstration of capability. We present preliminary results confirming the presence of known biases in the temperature and humidity profiles of both NWP centres. The night-time difference between GRUAN and Met Office (ECMWF) simulated brightness temperature at microwave frequencies predominantly sensitive to temperature is on average smaller than 0.1 K (0.4 K). Similarly, this difference is on average smaller than 0.5 K (0.4 K) at microwave frequencies predominantly sensitive to humidity. The uncertainty estimated for the Met Office–GRUAN difference ranges from 0.08 to 0.13 K for temperature-sensitive frequencies and from 1.6 to 2.5 K for humidity-sensitive frequencies. From the analysed sampling, 90 % of the comparisons are found to be in statistical agreement. This initial study has the potential to be extended to a larger collection of GRUAN profiles, covering multiple sites and years, with the aim of providing a robust estimation of both errors and uncertainties of NWP model fields in radiance space for a selection of key microwave and infrared frequencies.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-18
    Description: The characterisation of errors and uncertainties in numerical weather prediction (NWP) model fields is a major challenge that is addressed as part of the Horizon 2020 Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring (GAIA-CLIM) project. In that regard, observations from the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) radiosondes are being used at the Met Office and European Centre for Medium-range Weather Forecasts (ECMWF) to assess errors and uncertainties associated with model data. The software introduced in this study and referred to as the GRUAN Processor has been developed to collocate GRUAN radiosonde profiles and NWP model fields, simulate top-of-atmosphere brightness temperature at frequencies used by space-borne instruments, and propagate GRUAN uncertainties in that simulation. A mathematical framework used to estimate and assess the uncertainty budget of the comparison of simulated brightness temperature is also proposed. One year of GRUAN radiosondes and matching NWP fields from the Met Office and ECMWF have been processed and analysed for the purposes of demonstration of capability. We present preliminary results confirming the presence of known biases in the temperature and humidity profiles of both NWP centres. The night-time difference between GRUAN and Met Office (ECMWF) simulated brightness temperature at microwave frequencies predominantly sensitive to temperature is on average smaller than 0.1K (0.4K). Similarly, this difference is on average smaller than 0.5K (0.4K) at microwave frequencies predominantly sensitive to humidity. The uncertainty estimated for the Met Office – GRUAN difference ranges from 0.08 to 0.13K for temperature sensitive frequencies and from 1.6 to 2.5K for humidity sensitive frequencies. From the analysed sampling, 90% of the comparisons are found to be in statistical agreement. This initial study has the potential to be extended to a larger collection of GRUAN profiles, covering multiple sites and years, with the aim of providing a robust estimation of both errors and uncertainties of NWP model fields in radiance space for a selection of key microwave and infrared frequencies.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-10-30
    Description: The impact of deep convection on the water budget (water vapor and ice) from the tropical Upper Troposphere (UT, around 146hPa) to the Tropopause Level (TL, around 100hPa) is investigated. Ice water content (IWC) and water vapour (WV) measured in the UT and the TL by the Microwave Limb Sounder (MLS, Version 4.2) are compared to the precipitation (Prec) measured by the Tropical Rainfall Measurement Mission (TRMM, Version 007). The two datasets, gridded within 2°×2° horizontal bins, have been analyzed during the austral convective season: December, January and February (DJF) from 2004 to 2017. MLS observations are performed at 01:30 and 13:30 Local Solar Time whilst the Prec dataset is constructed with a time resolution of 1 hour. The new contribution of this study is to provide a much more detailed picture of the diurnal variation of ice than is provided by the very limited (2 per day) MLS observations. Firstly, we show that IWC represents 70 and 50% of the total water in the tropical UT and TL, respectively and that Prec is spatially highly correlated with IWC in the UT (Pearson linear coefficient R=0.7). We propose a method using Prec as a proxy of deep convection bringing ice up into the TL, during the growing stage of the convection. We validate the method using ice measurements from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) during the period DJF 2009–2010. Next, the diurnal amount of IWC injected into the UT and the TL by deep convection is calculated by the difference between the maximum and the minimum in the estimated diurnal cycle of IWC in these layers and over selected convective zones. Six tropical highly convective zones have been chosen: South America, South Africa, Pacific Ocean, Indian Ocean, and the Maritime Continent region, split into land (MariCont-L) and ocean (MariCont-O). IWC injection is found to be 2.73 and 0.41mgm−3 over tropical land in the UT and TL, respectively, and 0.60 and 0.13mgm−3 over tropical ocean in the UT and TL, respectively. The MariCont-L region has the greatest ice injection in both UT and TL (3.34 and 0.42–0.56mgm−3, respectively). The MariCont-O region has less ice injection than MariCont-L (0.91mgm−3 in the UT and 0.16–0.34mgm−3 in TL), but has the highest diurnal minimum value of IWC in the TL (0.34–0.37mgm−3) among all oceanic zones.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-06
    Description: The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-15
    Description: The amount of ice injected into the tropical tropopause layer has a strong radiative impact on climate. A companion paper (Part 1) used the amplitude of the diurnal cycle of ice water content (IWC) as an estimate of ice injection by deep convection, showed that the Maritime Continent (MariCont) region provides the largest injection to the upper troposphere (UT; 146 hPa) and to the tropopause level (TL; 100 hPa). This study focuses on the MariCont region and extends that approach to assess the processes, the areas and the diurnal amount and duration of ice injected over islands and over seas during the austral convective season. The model presented in the companion paper is again used to estimate the amount of ice injected (ΔIWC) by combining ice water content (IWC) measured twice a day by the Microwave Limb Sounder (MLS; Version 4.2) from 2004 to 2017 and precipitation (Prec) measurements from the Tropical Rainfall Measurement Mission (TRMM; Version 007) binned at high temporal resolution (1 h). The horizontal distribution of ΔIWC estimated from Prec (ΔIWCPrec) is presented at 2∘×2∘ horizontal resolution over the MariCont. ΔIWC is also evaluated by using the number of lightning events (Flash) from the TRMM-LIS instrument (Lightning Imaging Sensor, from 2004 to 2015 at 1 h and 0.25∘ × 0.25∘ resolution). ΔIWCPrec and ΔIWC estimated from Flash (ΔIWCFlash) are compared to ΔIWC estimated from the ERA5 reanalyses (ΔIWCERA5) with the vertical resolution degraded to that of MLS observations (ΔIWCERA5). Our study shows that the diurnal cycles of Prec and Flash are consistent with each other in phase over land but different over offshore and coastal areas of the MariCont. The observational ΔIWC range between ΔIWCPrec and ΔIWCFlash, interpreted as the uncertainty of our model in estimating the amount of ice injected, is smaller over land (where ΔIWCPrec and ΔIWCFlash agree to within 22 %) than over ocean (where differences are up to 71 %) in the UT and TL. The impact of the MLS vertical resolution on the estimation of ΔIWC is greater in the TL (difference between ΔIWCERA5 and 〈ΔIWCERA5〉 of 32 % to 139 %, depending on the study zone) than in the UT (difference of 9 % to 33 %). Considering all the methods, in the UT, estimates of ΔIWC span 4.2 to 10.0 mg m−3 over land and 0.4 to 4.4 mg m−3 over sea, and in the TL estimates of ΔIWC span 0.5 to 3.9 mg m−3 over land and 0.1 to 0.7 mg m−3 over sea. Finally, based on IWC from MLS and ERA5, Prec and Flash, this study highlights that (1) at both levels, ΔIWC estimated over land can be more than twice that estimated over sea and (2) small islands with high topography present the largest ΔIWC (e.g., island of Java).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-10
    Print ISSN: 0256-1530
    Electronic ISSN: 1861-9533
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...