ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-15
    Description: Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-gamma (IFN-gamma) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORgamma and RORgammaT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORgamma- and RORgammaT-deficient individuals also displayed an impaired IFN-gamma response to Mycobacterium. This principally reflected profoundly defective IFN-gamma production by circulating gammadelta T cells and CD4(+)CCR6(+)CXCR3(+) alphabeta T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORgamma, RORgammaT, or both.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Satoshi -- Markle, Janet G -- Deenick, Elissa K -- Mele, Federico -- Averbuch, Dina -- Lagos, Macarena -- Alzahrani, Mohammed -- Al-Muhsen, Saleh -- Halwani, Rabih -- Ma, Cindy S -- Wong, Natalie -- Soudais, Claire -- Henderson, Lauren A -- Marzouqa, Hiyam -- Shamma, Jamal -- Gonzalez, Marcela -- Martinez-Barricarte, Ruben -- Okada, Chizuru -- Avery, Danielle T -- Latorre, Daniela -- Deswarte, Caroline -- Jabot-Hanin, Fabienne -- Torrado, Egidio -- Fountain, Jeffrey -- Belkadi, Aziz -- Itan, Yuval -- Boisson, Bertrand -- Migaud, Melanie -- Arlehamn, Cecilia S Lindestam -- Sette, Alessandro -- Breton, Sylvain -- McCluskey, James -- Rossjohn, Jamie -- de Villartay, Jean-Pierre -- Moshous, Despina -- Hambleton, Sophie -- Latour, Sylvain -- Arkwright, Peter D -- Picard, Capucine -- Lantz, Olivier -- Engelhard, Dan -- Kobayashi, Masao -- Abel, Laurent -- Cooper, Andrea M -- Notarangelo, Luigi D -- Boisson-Dupuis, Stephanie -- Puel, Anne -- Sallusto, Federica -- Bustamante, Jacinta -- Tangye, Stuart G -- Casanova, Jean-Laurent -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900044C/AI/NIAID NIH HHS/ -- HHSN272200900044C/PHS HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- T32 AI007512/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):606-13. doi: 10.1126/science.aaa4282. Epub 2015 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. Department of Pediatrics, Padre Hurtado Hospital and Clinica Alemana, Santiago, Chile. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ; Institut Curie, INSERM U932, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. ; Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Trudeau Institute, Saranac Lake, NY 12983, USA. ; La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; Department of Radiology, Assistance Publique-Hopitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France. ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. ; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia. Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia. Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne NE4 6BE, UK. ; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Department of Paediatric Allergy Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Howard Hughes Medical Institute, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160376" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Candida albicans/*immunology ; Candidiasis, Chronic Mucocutaneous/complications/*genetics/immunology ; Cattle ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; Humans ; Immunity/*genetics ; Interferon-gamma/immunology ; Interleukin-17/immunology ; Mice ; Mutation ; Mycobacterium bovis/immunology/isolation & purification ; Mycobacterium tuberculosis/immunology/isolation & purification ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Pedigree ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology ; Receptors, Antigen, T-Cell, gamma-delta/genetics/immunology ; Severe Combined Immunodeficiency/*genetics ; T-Lymphocytes/immunology ; Thymus Gland/abnormalities/immunology ; Tuberculosis, Bovine/*genetics/immunology ; Tuberculosis, Pulmonary/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 2030-2032 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The angular distribution of lead in films deposited by pulsed laser irradiation of lead–zirconate–titanate and lead targets are studied as a function of ambient gas (argon or oxygen), gas pressure, and substrate temperature. When the substrate is kept in vacuum and at room temperature, a dip in the lead content attributable to the intrinsic resputtering of lead is observed at the position of the target surface normal. In the presence of an ambient gas, the dip disappears and the lead content increases at all angles. These results are attributed to a reduction of resputtering arising from scattering of the ablated species by ambient gas molecules. Under ambient oxygen and at high substrate temperature, the retention of lead content in the deposited films is largely due to the formation of lead oxide. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Optical and quantum electronics 29 (1997), S. 697-709 
    ISSN: 1572-817X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Abstract The multi-well energy representation technique is presented for the analysis of the valence band structures of multiple quantum well (MQW) lasers. In terms of this technique and its relative formulae, calculations are performed for InGaAs/InGaAsP strained MQW structures. It is found that the coupling exists between the wells, and causes the energy split. So, on the basis of the computed results, the coupling between the wells is analysed, and the split of both the quantized energy levels at the Γ point and the quantized energy bands at the non-Γ points is described. It is also found that the structural parameters of the MQW system strongly influence the coupling property and the energy split, and hence these effects are also discussed in relation to the periodic length, the well width, the distance between the wells, and the ratio of the well width to the periodic length.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 5 (1994), S. 215-220 
    ISSN: 1573-482X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effects of tin doping on the deep-level photoluminescence (PL) spectra of (LEC) InP were studied. Specifically, the effect of rapid thermal annealing (RTA) on the deep emission bands labelled as band A (1.13 eV), band B (1.06 eV), band C (1.20 eV) and band D (0.97 eV) were investigated. Band A appeared in both undoped and doped samples, but it disappeared after RTA for all the samples. It is suggested that band A is due to the formation of a complex involving VIn with residual impurities. The disappearance of band A after RTA is concomitant with the appearance of bands B, C and D. The existence of band B is attributed to the complex formation of VP with residual impurities. Band C was observed after the annealing process both in undoped and lightly-tin-doped samples and is believed to be due to the formation of VP single point defects. Band D was only observed in heavily doped samples and it is believed to be the effect of InP antisite defects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-09-30
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-01
    Description: TSC but not PTEN loss in starving cones of retinitis pigmentosa mice leads to an autophagy defect and mTORC1 dissociation from the lysosome Cell Death and Disease 7, e2279 (June 2016). doi:10.1038/cddis.2016.182 Authors: A Venkatesh, S Ma & C Punzo
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-02
    Description: Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of ‘non-productive’, ‘pre-synaptic’ and ‘synaptic’ complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-12-20
    Description: The novel recyclable and biodegradable absorbents NH 2 -Fe 2 O 3 and NH 2 -Fe 2 O 3 /oxidation-activated carbon (NH 2 -Fe 2 O 3 /OAC) with great physical properties and high adsorption for uptake heavy metal ions were synthesized in this work. The NH 2 -Fe 2 O 3 samples were prepared via one-pot hydrothermal methods, typically, FeCl 3 ·6H 2 O, ethylene glycol and sodium acetate anhydrous were directly dissolved under stirring, followed by x mL of DETA and 0.1 g of SDS at room temperature (x = 0.5, 1, 2, 3, 4 and 5 mL). The as-prepared NH 2 -Fe 2 O 3 were added into the mixture of oxidation-activated carbon, followed by the cation surfactant CTAB. After reflux condensation, the composites were washed, dried and labeled name NH 2 -Fe 2 O 3 /OAC. Systematically characterized by scanning electron micros...
    Print ISSN: 1755-1307
    Electronic ISSN: 1755-1315
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-17
    Description: A compound inhibitor composed of cetyltrimethyl ammonium bromide (CTAB) and bromohexadecyl pyridine was tested as corrosion inhibitor for zinc in hydrochloric acid. The results of static coupon test show that the compound inhibitor can effectively protect zinc from corrosion and the best concentration ratio is CTAB 50 mg/L and bromohexadecyl pyridine 200 mg/L. The polarization results show that the compound inhibitor will cause a negative shift of E 0 of zinc in hydrochloric acid. The EIS (electrchemical impedance spectra) results show that the inhibitor leads to a bigger radius and has one time constant. SEM results show that the CTAB and bromohexadecyl pyridine form a uniform and compact membrane on the surface of zinc that can protect zinc from corroding effectively.
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-05-02
    Description: There is increasing evidence to suggest that high field strength elements (HFSE) could be mobile to some extent in hydrothermal fluid due to the influence of halogens (e.g., fluorine and chlorine). However, in natural hydrothermal (fluid) systems, "coupled dissolution reprecipitation" (CDR) reactions at fluid-mineral interfaces that have been emphasized in the past decade may play a key role in controlling the final textures and mineral assemblages. The influences of the CDR reactions in hydrothermal systems on HFSE enrichment or depletion at the mineral scale are enigmatic. In this study, we show that enrichment of Nb and Zr can occur in magnetite on the mineral scale formed by hydrothermal fluids at medium-to-lower temperature in a skarn system. Four stages of mineralization and alteration of magnetite have been identified in the Baishiya iron skarn deposit of the East Kunlun Mountains of China. Magnetite formed in stage 1 (S1) developed obvious oscillatory zonation, whereas that formed in stages 2 (S2) and 3 (S3) shows hydrothermal alteration and metasomatic textures, and that in stage 4 (S4) developed euhedral crystals with simple zoning. Systematic variations in the trace element compositions of different magnetite grains analyzed by EMPA and LA-ICP-MS suggest that the magnetite from S1 to S3 may have formed in a metasomatic process at relatively constant temperature, whereas the magnetite from S4 formed by re-equilibrium processes at lower temperature. The magnetite from each stage can be divided into light and dark domains based on backscattered electron images. The dark domains in the magnetite from S1 and S2 have higher Nb/Ta (8.52–27.00) and Zr/Hf (18.22–52.64) ratios and silicon contents than the light domains (0.55–5.66 and 2.54–16.43, respectively). Compared with other magnetite ores, the ores from S1 and S2 are depleted of V and Ni. This depletion may be induced by increased oxygen and co-crystallized sulfide. However, these variations are unlikely to be responsible for the enrichment of Nb and Zr in magnetite at equilibrium conditions. Conversely, the dark domains of the magnetite from S1 and S2 are porous, irregular, and/or oscillatory with quartz inclusions, indicating nonequilibrium conditions. These textural features could be attributed to the CDR reactions that are ubiquitous in skarn systems. The increased silicon concentrations in magnetite due to the CDR reactions could affect the lattice parameters of the magnetite structure, leading to an overall change in the volume of magnetite ores. The reduplicative processes of volume change, dissolution, and porosity formation within magnetite are further imporved due to an incresed oxygen fugacity and co-crystallized sulfide (e.g., decreased temperature or increased sulfur fugacity) at far-from-equilibrium or local equilibrium conditions, resulting in oscillatory magnetite dark domains of S1. Ripening of the transient porosity can trap nanoscale precipitates of columbite and zircon within pores of Si-magnetite, and this precipitation could be attributed to the co-crystallized phlogopite that would incorporate fluorine from the hydrothermal fluid, and subsequently decrease the solubility of Nb and Zr in the skarn system. This scenario highlights that Nb and Zr could be scavenged and enriched into in the reaction fronts (porosity) by controlling the reaction pathway at a local scale that does not reflect the overall fluid-rock interaction history of the mineral assemblage.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...