ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-07
    Description: The Italian Tsunami Effects Database (ITED), consists of an ensemble of records reporting tsunami effects observed at several Observation Points (OP) along the Italian coasts from historical times. ITED was compiled starting from the Euro Mediterranean Tsunami Catalogue (EMTC) and it focuses on the propagation effects observed along the Italian coasts, providing information on how each locality was interested by tsunami effects over time. The effects reported in ITED are related to tsunamis occurred within the Italian territory and contained in the EMTC; these events were excerpt, analyzed and updated according to recent studies published in literature. The database can be accessed through a web GIS application, that displays the location of the OPs indicating for each of them the description of tsunami effects found in literature and the corresponding bibliographic references as well as the metrics related to the observed event. Based on those descriptions, the estimate value of the tsunami intensity has been assigned to each OP, according to both the Sieberg-Ambraseys and the Papadopoulos-Imamura scales. All the ITED data, including quantitative data such as runup, inundation, withdrawal, can be retrieved by accessing online the database through the WebApp that was expressly designed and built for this purpose. ITED contains 300 observations of tsunami effects at 225 OPs referred to 186 Italian main localities, hereafter called Place Name (PN) related to 72 Italian tsunamis. The database provides also the tsunami-history for each PN, allowing the end user to have a complete picture of how the PN is prone to tsunami effects.The realization of ITED was also the occasion to update Italian tsunamis contained in the EMTC, leading to the release of a new version of the EMTC catalogue, named EMTC2.0. ITED was specifically built to meet the needs of the tsunami hazard community, thus providing useful information that can improve the knowledge on how much the national territory is exposed to tsunami risk.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-06
    Description: Site-specific seismic probabilistic tsunami hazard analysis (SPTHA) is a computationally demanding task, as it requires, in principle, a huge number of high-resolution numerical simulations for producing probabilistic inundation maps. We implemented an efficient and robust methodology using a filtering procedure to reduce the number of numerical simulations needed while still allowing for a full treatment of aleatory and epistemic uncertainty. Moreover, to avoid biases in tsunami hazard assessment, we developed a strategy to identify and separately treat tsunamis generated by near-field earthquakes. Indeed, the coseismic deformation produced by local earthquakes necessarily affects tsunami intensity, depending on the scenario size, mechanism and position, as coastal uplift or subsidence tends to diminish or increase the tsunami hazard, respectively. Therefore, we proposed two parallel filtering schemes in the far- and the near-field, based on the similarity of offshore tsunamis and hazard curves and on the similarity of the coseismic fields, respectively. This becomes mandatory as offshore tsunami amplitudes can not represent a proxy for the coastal inundation in the case of near-field sources. We applied the method to an illustrative use case at the Milazzo oil refinery (Sicily, Italy). We demonstrate that a blind filtering procedure can not properly account for local sources and would lead to a nonrepresentative selection of important scenarios. For the specific source–target configuration, this results in an overestimation of the tsunami hazard, which turns out to be correlated to dominant coastal uplift. Different settings could produce either the opposite or a mixed behavior along the coastline. However, we show that the effects of the coseismic deformation due to local sources can not be neglected and a suitable correction has to be employed when assessing local-scale SPTHA, irrespective of the specific signs of coastal displacement.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-18
    Description: Site-specific Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) is computationally demanding, as it requires in principle a huge number of high-resolution numerical simulations for producing probabilistic inundation maps. We implemented an efficient and robust methodology that, based on the similarity of offshore tsunamis and hazard curves in front of a target site, uses a filtering procedure to reduce the number of numerical simulations needed, while still allowing full treatment of aleatory and epistemic uncertainty. Moreover, near-field sources are identified, on the basis of the tsunami coseismic initial conditions, and treated separately to avoid biases in the tsunami hazard assessment. In fact, coastal coseismic deformation necessarily affects the tsunami intensity, depending on the scenario size, mechanism, and position. Therefore, we developed two parallel filtering schemes in the far- and the near-field, respectively. For near-field sources, offshore tsunami amplitude can not represent a proxy for the coastal inundation, and filtering is based on coseismic field. By comparison of the results obtained with and without the correction for the near-field sources, for a use-case at the Milazzo oil refinery (Sicily, Italy), we demonstrated that special treatment of local sources plays a fundamental role and is applicable in local scale SPTHA.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-11
    Description: Probabilistic Tsunami Hazard Analysis (PTHA) quantifies the probability of exceeding a specified inundation intensity at a given location within a given time interval. PTHA provides scientific guidance for tsunami risk analysis and risk management, including coastal planning and early warning. Explicit computation of site-specific PTHA, with an adequate discretization of source scenarios combined with high-resolution numerical inundation modelling, has been out of reach with existing models and computing capabilities, with tens to hundreds of thousands of moderately intensive numerical simulations being required for exhaustive uncertainty quantification. In recent years, more efficient GPU-based High-Performance Computing (HPC) facilities, together with efficient GPU-optimized shallow water type models for simulating tsunami inundation, have now made local long-term hazard assessment feasible. A workflow has been developed with three main stages: 1) Site-specific source selection and discretization, 2) Efficient numerical inundation simulation for each scenario using the GPU-based Tsunami-HySEA numerical tsunami propagation and inundation model using a system of nested topo-bathymetric grids, and 3) Hazard aggregation. We apply this site-specific PTHA workflow here to Catania, Sicily, for tsunamigenic earthquake sources in the Mediterranean. We illustrate the workflows of the PTHA as implemented for High-Performance Computing applications, including preliminary simulations carried out on intermediate scale GPU clusters. We show how the local hazard analysis conducted here produces a more fine-grained assessment than is possible with a regional assessment. However, the new local PTHA indicates somewhat lower probabilities of exceedance for higher maximum inundation heights than the available regional PTHA. The local hazard analysis takes into account small-scale tsunami inundation features and non-linearity which the regional-scale assessment does not incorporate. However, the deterministic inundation simulations neglect some uncertainties stemming from the simplified source treatment and tsunami modelling that are embedded in the regional stochastic approach to inundation height estimation. Further research is needed to quantify the uncertainty associated with numerical inundation modelling and to properly propagate it onto the hazard results, to fully exploit the potential of site-specific hazard assessment based on massive simulations.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-18
    Description: Traditional tsunami catalogues are conceived as a collection of tsunamis classified by the generating cause, providing a general description of the effects observed for each tsunami. Those catalogues, even if they provide fundamental information, are not suitable for producing an exhaustive picture of the geographical distribution of the tsunami effects. In this paper we introduce the new Italian Tsunami Effects Database (ITED), a collection of evidence documenting the effects along the Italian coasts from historical times to present. The database comes forth the Euro-Mediterranean Tsunami Catalogue (EMTC) and focusses on the effects of tsunamis observed along the Italian coasts providing descriptive and quantitative information for each OP. The information reported in ITED does not only concern the effects produced by Italian tsunamis, but also those effects produced by tsunamis originated outside the Italian territory. ITED contains 318 OPs, related to 73 Italian tsunamis and to four tsunamis which occurred outside Italy. The database can be accessed through a WebApp that displays for each OP the description of effects, quantitative data (run-up, inundation, withdrawal, etc.) and tsunami intensity with the corresponding bibliographic references. The database also provides the tsunami intensity distribution along time (tsunami-history) for each site, allowing the end user to know how a place has been affected by tsunamis over the time. The information contained in ITED makes this database a useful tool to understand how tsunamis have affected the Italian territory and emphasizes the importance of studying the tsunami hazard along the Italian coasts.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-11
    Description: Inundation maps are a fundamental tool for coastal risk management and in particular for designing evacuation maps and evacuation planning. These in turn are a necessary component of the tsunami warning systems’ last-mile. In Italy inundation maps are informed by a probabilistic tsunami hazard model. Based on a given level of acceptable risk, Italian authorities in charge for this task recommended to consider, as design hazard intensity, the average return period of 2500 years and the 84th percentile of the hazard model uncertainty. An available, regional-scale tsunami hazard model was used that covers the entire Italian coastline. Safety factors based on analysis of run-up variability and an empirical coastal dissipation law on a digital terrain model (DTM) were applied to convert the regional hazard into the design run-up and the corresponding evacuation maps with a GIS-based approach. Since the regional hazard cannot fully capture the local-scale variability, this simplified and conservative approach is considered a viable and feasible practice to inform local coastal risk management in the absence of high-resolution hazard models. The present work is a first attempt to quantify the uncertainty stemming from such procedure. We compare the GIS-based inundation maps informed by a regional model with those obtained from a local high-resolution hazard model. Two locations on the coast of eastern Sicily were considered, and the local hazard was addressed with the same seismic model as the regional one, but using a higher-resolution DTM and massive numerical inundation calculations with the GPU-based Tsunami-HySEA nonlinear shallow water code. This study shows that the GIS-based inundation maps used for planning deal conservatively with potential hazard underestimation at the local scale, stemming from typically unmodeled uncertainties in the numerical source and tsunami evolution models. The GIS-based maps used for planning fall within the estimated “error-bar” due to such uncertainties. The analysis also demonstrates the need to develop local assessments to serve very specific risk mitigation actions to reduce the uncertainty. More in general, the presented case-studies highlight the importance to explore ways of dealing with uncertainty hidden within the high-resolution numerical inundation models, e.g., related to the crude parameterization of the bottom friction, or the inaccuracy of the DTM.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-31
    Description: The Italian Tsunami Alert Center based at the Istituto Nazionale di Geofisica e Vulcanologia (CAT-INGV) has been monitoring the Mediterranean seismicity in the past 8 yr to get fast and reliable information for seismically induced tsunami warnings. CAT-INGV is a tsunami service provider in charge of monitoring the seismicity of the Mediterranean Sea and of alerting Intergovernmental Oceanographic Commission (IOC)/UNESCO subscriber Member States and the Italian Department of Civil Protection of a potentially impending tsunami, in the framework of the Tsunami Warning and Mitigation System in the North-eastern Atlantic, the Mediterranean and connected seas (NEAMTWS). CAT-INGV started operating in 2013 and became operational in October 2016. Here, after describing the NEAMTWS in the framework of the global effort coordinated by IOC/UNESCO, we focus on the tsunami hazard in the Mediterranean Sea. We then describe CAT-INGV mandate, functioning, and operational procedures. Furthermore, the article discusses the lessons learned from past events occurring in the Mediterranean Sea, such as the Kos-Bodrum in 2017 (Mw 6.6) and the Samos-Izmir in 2020 (Mw 7.0) earthquakes, which generated moderately damaging tsunamis. Based on these lessons, we discuss some potential improvements for the CAT-INGV and the NEAMTWS, including better seismic and sea level instrumental coverage. We emphasize the need for tsunami risk awareness raising, better preparation, and full implementation of the tsunami warning “last-mile” to foster the creation of a more integrated, interoperable, and sustainable risk reduction framework. If we aim to be better prepared for the next tsunami, these important challenges should be prioritized in the agenda of the IOC/UNESCO Member States and the European Commission.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-05
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH 〉5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH 〉3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH 〉1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-08
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH 〉5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH 〉3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH 〉1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.
    Description: The NEAMTHM18 was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations with grant no. ECHO/SUB/2015/718568/PREV26 (https://ec.europa.eu/echo/funding-evaluations/financing-civil-protection-europe/selected-projects/probabilistic-tsunami-hazard_en). The work by INGV authors also benefitted from funding by the INGV-DPC Agreement 2012-2021 (Annex B2).
    Description: Published
    Description: 616594
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: 5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPC
    Description: 3IT. Calcolo scientifico
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: probabilistic tsunami hazard assessment ; earthquake-generated tsunami ; hazard uncertainty analysis ; ensemble modeling ; maximum inundation height ; NEAM ; 05.08. Risk ; 03.02. Hydrology ; 04.06. Seismology ; 04.07. Tectonophysics ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-12
    Description: A probabilistic hazard analysis of tsunami generated by subaqueous volcanic explosion is applied to the Campi Flegrei caldera (Campania, Italy). An event tree is developed to quantify the tsunami hazard due to the submarine explosions by: i) defining potential size classes of explosion magnitude on the basis of past volcanic activity in the Campi Flegrei caldera and sites in the underwater part of the caldera; ii) simulating the generation and propaga- tion of the consequent tsunami waves able to reach the coasts of the Campania region for all combinations of tsunami-generating vents and sizes; and iii) quantifying the tsunami probability and relative uncertainty, condi- tional upon the occurrence of an underwater eruption at Campi Flegrei. Tsunami hazard generated by subaque- ous volcanic explosions is considered crucial because of its potential high impact on the densely populated coastal areas of the Pozzuoli Bay and Gulf of Naples even if the probability for eruptions in the submarine part of the caldera is certainly low. The tsunami hazard analysis is presented using conditional hazard curves and maps, that is calculating the probability (and relative uncertainties) of exceeding given tsunami intensity thresh- olds (wave amplitudes at the coast), given the occurrence of a subaqueous eruption. The results indicate that a significant tsunami hazard exists in many areas of the Bay of Naples.
    Description: Published
    Description: 106-116
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...