ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 20 (2010): 1569–1582, doi:10.1890/09-0693.1.
    Description: We seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (θ), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, θ, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, θ, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, θ, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.
    Description: Data collection was possible thanks to NASA, the NSF Center for Embedded Networked Sensing (CCR-0120778), DOE (DE-FG02-03ER63638), CONACyT, UCMEXUS, NSF (EF-0410408), NSF-LTER, KAKENHI (12878089 and 13480150), the Academy of Finland (213093), the Austrian Science Fund (FWF, P18756-B16), the Kearney Foundation, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and the Natural Science and Engineering Research Council of Canada (NSERC). R. Vargas was supported by grant DEB-0639235 during the preparation of this manuscript.
    Keywords: Lags ; Moderate-resolution imaging spectroradiometer (MODIS) ; Photosynthesis ; Soil CO2 efflux ; Soil CO2 production ; Soil CO2 sensors ; Soil respiration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haentjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., & Zona, D. Representativeness of eddy-covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301, (2021): 108350, https://doi.org/10.1016/j.agrformet.2021.108350.
    Description: Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
    Description: We thank the AmeriFlux site teams for sharing their data and metadata with the network. Funding for these flux sites is acknowledged in the site data DOI, shown in Table S1. This analysis was supported in part by funding provided to the AmeriFlux Management Project by the U.S. Department of Energy's Office of Science under Contract No. DE-AC02-05CH11231. All footprint climatologies, site-level representativeness indices, and monthly EVI and sensor location biases can be accessed via the Zenodo Data Repository (Datasets S1–S6, http://doi.org/10.5281/zenodo.4015350).
    Keywords: Flux footprint ; Spatial representativeness ; Landsat EVI ; Land cover ; Sensor location bias ; Model-data benchmarking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 64 (1993), S. 149-174 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This is the first of two papers reporting the results of a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. The experimental site was located on a 5o slope. The stand, which was planted in 1962, and thinned and pruned uniformly in 1988, had a (projected) leaf area index of 5.4 and a heighth=16.7 m. Two eddy correlation units were operated in the daytime to measure the fluctuations in the three velocity components, air temperature and water vapour density, with one mounted permanently at a height of 23.0m (z/h=1.38) and the other at various heights in the stand with two to three 8-hour periods of measurement at each level. Humidity and radiation regimes both above and beneath the overstory and profiles of wind speed and air temperature were also measured. The most important findings are: (1) A marked secondary maximum in the wind speed profile occurred in the middle of the trunk space (aroundz/h=0.12). The turbulence intensities for the longitudinal and lateral velocity components increased with decreasing height, but the intensity for the vertical velocity component had a maximum atz/h=0.60 (middle of the canopy layer). Magnitudes of the higher order moments (skewness and kurtosis) for the three velocity components were higher in the canopy layer than in the trunk space and above the stand. (2) There was a 20% reduction in Reynolds stress fromz/h=1.00 to 1.38. Negative Reynolds stress or upward momentum flux perisistently occurred atz/h=0.12 and 0.42 (base of the canopy), and was correlated with negative wind speed gradients at the two heights. The longitudinal pressure gradient due to the land-sea/upslope-downslope circulations was believed to be the main factor responsible for the negative Reynolds stress. (3) Momentum transfer was highly intermittent. Sweep and ejection events dominated the transfer atz/h=0.60, 1.00 and 1.38, with sweeps playing the more important role of the two atz/h=0.60 and 1.00 and the less important role atz/h=1.38. But interaction events were of greater magnitude than sweep and ejection events atz/h=0.12 and 0.42.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Comparison was made of the flux measurements of a closed-path CO2/H2O analyzer and an open-path H2O analyzer above a clover field and the forest floor of a Douglas-fir stand. The attenuation of the gas concentration fluctuations caused by the sampling tube of the closed-path analyzer resulted in underestimation of the H20 flux above both surfaces. The degree of underestimation above the clover field depended on wind speed, but was smaller than that calculated from the transfer function for laminar flow in a circular tube and the scalar cospectrum in the neutral and unstable surface layer. Above the forest floor CO2 fluctuations led those of H2O by ∼0.7s. The implications of this are discussed regarding the determination of the time delay caused by the sampling tube of the closedpath analyzer. The day-time CO2 efflux from the forest floor, averaged over three days, was 0.043 mg/(m2s).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 64 (1993), S. 369-389 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This is the second paper describing a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. Two eddy correlation units were operated in the daytime to measure the fluxes of sensible heat and water vapour and other turbulence statistics at various heights within and above the stand. Net radiation was measured above the overstory using a stationary net radiometer and beneath the overstory using a tram system. Supplementary measurements included soil heat flux, humidity above and beneath the overstory, profiles of wind speed and air temperature, and the spatial variation of sensible heat flux near the forest floor. The sum of sensible and latent heat fluxes above the stand accounted for, on average, 83% of the available energy flux. On some days, energy budget closure was far better than on others. The average value of the Bowen ratio was 2.1 above the stand and 1.4 beneath the overstory. The mid-morning value of the canopy resistance was 150–450 s/m during the experiment and mid-day value of the Omega factor was about 0.20. The daytime mean canopy resistance showed a strong dependence on the mean saturation deficit during the two-week experimental period. The sum of sensible and latent heat fluxes beneath the overstory accounted for 74% of the available energy flux beneath the overstory. One of the reasons for this energy imbalance was that the small number of soil heat flux plates and the short pathway of the radiometer tram system was unable to account for the large horizontal heterogeneity in the available energy flux beneath the overstory. On the other hand, good agreement was obtained among the measurements of sensible heat flux made near the forest floor at four positions 15 m apart. There was a constant flux layer in the trunk space, a large flux divergence in the canopy layer, and a constant flux layer above the stand. Counter-gradient flux of sensible heat constantly occurred at the base of the canopy. The transfer of sensible heat and water vapour was dominated by intermittent cool downdraft and warm updraft events and dry downdraft and moist updraft events, respectively, at all levels. For sensible heat flux, the ratio of the contribution of cool downdrafts to that of warm updrafts was greater than one in the canopy layer and less than one above the stand and near the forest floor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-1472
    Keywords: Turbulence ; Canopies ; Temperature ramps ; Renewal models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Sensible heat, latent heat, and other scalar fluxes cannot be measuredwithin short dense canopies, e.g., straw mulches, with standard approachessuch as eddy correlation, Bowen ratio-energy balance, aerodynamic, andvariance methods. However, recently developed surface renewal models, thatare based on the fact that most of the turbulent transfer within and abovecanopies is associated with large-scale coherent eddies, which are evidentas ramp patterns in scalar time series, offer a feasible solution. Wepresent a new air renewal model that calculates sensible heat flux atdifferent heights within and above a canopy from the average cubictemperature structure function, sampled at a moderate rate, and measuredaverage friction velocity. The model is calibrated and tested with datameasured above and within a Douglas-fir forest and above a straw mulch andbare soil. We show that the model describes half-hour variations ofsensible heat flux very well, both within the canopy and roughnesssublayers and in the inertial sublayer, for stable and unstable atmosphericconditions. The combined empirical coefficient that appears in the modelhas an apparently universal value of about 0.4 for all surfaces andheights, which makes application of the model particularly simple. Themodel is used to predict daytime and nighttime sensible heat flux profileswithin the straw mulch and within a small bare opening in the mulch.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-1472
    Keywords: Turbulence ; Canopies ; Temperature ramps ; Structure functions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Air temperature time series within and above canopies reveal ramp patternsassociated with coherent eddies that are responsible for most of thevertical transport of sensible heat. Van Atta used a simple step-changeramp model to analyse the coherent part of air temperature structurefunctions. However, his ocean data, and our own measurements for aDouglas-fir forest, straw mulch, and bare soil, reveal that even withoutlinearization his model cannot account for the observed decrease of thecubic structure function for small time lag. We found that a ramp model inwhich the rapid change at the end of the ramp occurs in a finite microfronttime can describe this decrease very well, and predict at least relativemagnitudes of microfront times between different surfaces. Averagerecurrence time for ramps, determined by analysis of the cubic structurefunction with the new ramp model, agreed well with values determined usingthe Mexican Hat wavelet transform, except at lower levels within theforest. Ramp frequency above the forest and mulch scaled very well withwind speed at the canopy top divided by canopy height. Within the forest,ramp frequency did not vary systematically with height. This is inaccordance with the idea that large-scale canopy turbulence is mostlygenerated by instability of the mean canopy wind profile, similar to aplane mixing layer. The straw mulch and bare soil experiments uniquelyextend measurements of temperature structure functions and ramp frequencyto the smallest scales possible in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-07-01
    Description: Measurements of the spatial mean values of global irradiance, photosynthetic photon flux density, and the downward longwave irradiance under a 26-year-old, second-growth Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) forest canopy on a 26° south-facing slope were made with a tramway system, which scanned a 20-m transect in 12 min. The diffuse solar irradiance under the canopy was measured with a stationary pyranometer equipped with a shadow band. The extinction coefficients for the direct, global, and photon components were derived as functions of the solar incident angle over the range of 15° to 85°. The extinction coefficient for the diffuse radiation was found to correlate well with the ratio of the direct to diffuse irradiance above the canopy. Complete diurnal cycles of the downward longwave irradiance were simulated with a simple model based on the air temperature inside the stand. Analyses of the measurements of all the shortwave and longwave components were made using an effective leaf area index, which was derived from the measurements of the direct irradiance above and below the stand. It was found that the distribution of the leaf inclination angle of a Douglas-fir canopy has strong planophile characteristics, and that in the case of a forest stand on a slope, it is critical to obtain the characteristics of the light transmission through the canopy over the entire incident angle range before effective leaf area index is calculated. Warren Wilson's 57.5° approximation did not hold for the Douglas-fir canopy, which had distinct foliage clumping features.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-09
    Description: We studied the recovery of tree and stand-level C-storage in a lodgepole pine (Pinus contorta var. latifolia) forest in northern British Columbia that experienced substantial (~83%) mortality in 2006-07 (total loss by 2013 = 86%) during a severe mountain pine beetle (MPB) (Dendroctonus ponderosae) infestation. Earlier work suggested that this forest recovered positive annual C-storage 3 years after attack based on eddy-covariance measurements. We sought to confirm these results by examining C-storage in surviving pine trees using tree core analysis. Average growth release of surviving lodgepole pine trees was 392% (range -53% to 2326%) compared to mean decadal growth prior to MPB attack. Nearly 97% of trees underwent a growth release, considerably higher than the 15-75% reported for lodgepole pine in previous studies. Mean annual stem C-storage of the surviving trees in this study was highly correlated (r=0.88) with 10 years of annual net ecosystem productivity estimates made using the eddy covariance technique, indicating that surviving lodgepole pine remain an important part of C-recovery after MPB attack. Mean annual stem C-storage was also highly correlated (r=0.92) with the cumulative percent of downed stems ha-1 at the site, suggesting that increased availability of resources is likely assisting the growth release.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-11-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...