ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 17 (1988), S. 147-151 
    ISSN: 1573-0867
    Keywords: time of zinc application ; wheat ; zinc sulphate ; zinc oxide ; zinc uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field experiments with wheat were conducted for two years on flood plain alluvial soils to study the effectiveness of soil application of zinc sulphate and zinc oxide at 0, 15, 45, 60, 75 and 90 days after sowing. Yield and zinc uptake of wheat increased significantly with the application of zinc. Delaying the application of both zinc sulphate and zinc oxide up to 45 days of sowing did not adversly affect the zinc nutrition of wheat. However, delaying the application for 75 or 90 days after sowing eliminated the response. Zinc sulphate, when applied within 60 days of sowing performed better than zinc oxide. In a laboratory study, zinc sulphate maintained a higher level of zinc in the soil solution than zinc oxide at least over a 3-week period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0867
    Keywords: urea supergranules ; placement geometry ; N use efficiency ; permeable soils ; lowland rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a laboratory experiment 5 cm depth of water was allowed to percolate daily down through a 15 cm thick soil (Typic Ustipsamment) layer. It was observed that leaching losses of urea supergranules (USG)-N could be decreased by about 20% by the placement of four 0.25 g granules at four points instead of one 1 g granule at one point. In field microplots, the placement of approximately 30 granules of 0.30 g size instead of 9 granules of 1.00 g size resulted in reduced leaching of USG-N and, in turn, increased rice yield. In a follow-up field study, the advantage of more frequently placed USG was confirmed. As compared with 1 g USG placed in the usual manner in the center of four rice hills, increasing the density of placement in soil produced 15% more rice grain. Further increase in rice yield could be obtained by increasing the number of USG placed in the soil and decreasing the size of the granule from 1.00 g to 0.70 or 0.35 g. With USG of 0.35 and 0.70 g yields were equal or sometimes even slightly higher than with split application of prilled urea on a heavily percolating, low-CEC, light-textured soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0867
    Keywords: farmyard manure ; maize ; nitrogen ; phosphorus ; rice ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field experiments with rice-wheat rotation were conducted during five consecutive years on a coarse-textured low organic matter soil. By amending the soil with 12t FYM ha−1, the yield of wetland rice in the absence of fertilizers was increased by 32 per cent. Application of 80 kg N ha−1 as urea could increase the grain yield of rice equivalent to 120 kg N ha−1 on the unamended soil. Although the soil under test was low in Olsen's P, rice did not respond to the application of phosphorus on both amended and unamended soils. For producing equivalent grain yield, fertilizer requirement of maize grown on soils amended with 6 and 12 t FYM ha−1 could be reduced, respectively to 50 and 25 per cent of the dose recommended for unamended soil (120 kg N + 26.2 kg P + 25 kg K ha−1). Grain yield of wheat grown after rice on soils amended with FYM was significantly higher than that obtained on unamended soil. In contrast, grain yield of wheat which followed maize did not differ significantly on amended or unamended soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-0867
    Keywords: ammonia volatilization ; green manure ; inhibitor ; NBPT ; rice ; urea hydrolysis ; wheat straw
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Using a forced-draft chamber technique, the suppression of NH3 volatilization losses by applying N-(n-butyl) thiophosphoric triamide (NBPT) was studied in an alkaline sandy loam soil amended with green manure or wheat straw. Applied urea was completely hydrolysed in 12, 8 and 6 days in unamended, green manure and wheat straw amended soil, respectively. By applying 0.5% (w/w of urea) NBPT, complete hydrolysis of urea was delayed up to 16 days in the unamended soil, whereas in wheat straw amended soil urea hydrolysis was completed by the 12th day even when it was treated with 2% NBPT. Applied at 1 or 2% level, NBPT delayed the NH3 volatilization to the 4th day after application of urea in green manure or wheat straw amended soil. Hydrolysis of urea was more effectively retarded by applying NBPT in the unamended soil than in soil amended with green manure or wheat straw. In the unamended soil, 7.1% of the applied urea was lost through NH3 volatilization. The losses were reduced to 1.2 and 0.7% by applying 0.5 and 1% NBPT, respectively. Enhanced NH3 volatilization caused by the green manure or wheat straw was counteracted by applying NBPT.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 47 (1996), S. 243-250 
    ISSN: 1573-0867
    Keywords: fertilizer value ; nitrogen ; phosphorus ; poultry manure ; urea ; wetland rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Poultry manure applied alone or in combination with urea at different N levels was evaluated as a N source for wetland rice grown in a Fatehpur loamy sand soil. Residual effects were studied on wheat which followed rice every year during the three cropping cycles. In the first year, poultry manure did not perform better than urea but by the third year, when applied in quantities sufficient to supply 120 and 180 kg N ha−1, it produced significantly more rice grain yield than the same rates of N as urea. Poultry manure sustained the grain yield of rice during the three years while the yield decreased with urea. Apparent N recovery by rice decreased from 45 to 28% during 1987 to 1989 in the case of urea, but it remained almost the same (35, 33 and 37%) for poultry manure. Thus, urea N values of poultry manure calculated from yield or N uptake data following two different approaches averaged 80, 112 and 127% in 1987, 1988 and 1989, respectively. Poultry manure and urea applied in 1:1 ratio on N basis produced yields in between the yields from the two sources applied alone. After three cycles of rice-wheat rotation, the organic matter in the soil increased with the amount of manure applied to a plot. Olsen available P increased in soils amended with poultry manure. A residual effect of poultry manure applied to rice to supply 120 or 180 kg N ha−1 was observed in the wheat which followed rice and it was equivalent to 40 kg N ha−1 plus some P applied directly to wheat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 28 (1991), S. 179-184 
    ISSN: 1573-0867
    Keywords: Ammonium sulphate ; leaching ; nitrogen ; potassium nitrate ; urea ; lowland rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Application of 120 kg urea-N ha−1 to lowland rice grown in a highly percolating soil in 10 equal split doses at weekly intervals rather than in 3 equal split doses at 7, 21 and 42 days after transplanting did not significantly increase rice grain yield and N uptake. Results suggest that leaching losses of N were not substantial. In lysimeters planted with rice, leaching losses of N as urea, NH 4 + , and NO 3 - beyond 30 cm depth of a sandy loam soil for 60 days were about 6% of the total urea-N and 3% of the total ammonium sulphate-N applied in three equal split doses. Application of urea even in a single dose at transplanting did not result in more N leaching losses (13%) compared to those observed from potassium nitrate (38%) applied in three split doses. Nitrogen contained in potassium nitrate was readily leached during the first week of its application. More N was lost from the first dose of N applied at transplanting than from the second or third dose. Data pertaining to yield, N uptake and per cent N recovery by rice revealed that the performance of different fertilizer treatments was inversely related to susceptibility of N to leaching.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 47 (1996), S. 197-212 
    ISSN: 1573-0867
    Keywords: ammonia volatilization ; coarse textured soils ; denitrification ; fertilizer N use efficiency ; irrigated soils ; leaching ; nitrification ; nitrogen ; porous soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Porous soils are characterized by high infiltration, low moisture retention and poor fertility due to limitation of organic matter and nitrogen (N). However, wherever irrigated and properly managed, these are among the most productive soils in the world. For sustained productivity and prevention of N related pollution problems, fertilizer N management in porous soils needs to be improved by reducing losses of N via different mechanisms. Losses of N through ammonia volatilization are not favoured in porous soils provided fertilizer N is applied before an irrigation or rainfall event. Ammonium N transported to depth along with percolating water cannot move back to soil surface where it is prone to be lost as NH3. Under upland conditions nitrification proceeds rapidly in porous soils. Due to high water percolation rates in porous soils, continuous flooding for rice production usually cannot be maintained and alternate flood and drained conditions are created. Nitrification proceeds rapidly during drained conditions and nitrates thus produced are subsequently reduced to N2 and N2O through denitrification upon reflooding. Indirect N-budget estimates show that up to 50% of the applied N may be lost via nitrification-denitrification in irrigated porous soils under wetland rice. High soil nitrate N levels and sufficient downward movement of rain water to move nitrate N below the rooting depth are often encountered in soils of humid and subhumid zones, to a lesser extent in soils of semiarid zone and quite infrequently, if at all in arid zone soils. The few investigations carried out with irrigated porous soils do not show substantial leaching losses of N beyond potential rooting zone even under wetland rice. However, inefficient management of irrigation water and fertilizer N particularly with shallow rooted crops may lead to pollution of groundwater due to nitrate leaching. At a number of locations, groundwater beneath irrigated porous soils is showing increased nitrate N concentrations. Efficient management of N for any cropping system in irrigated porous soils can be achieved by plugging losses of N via different mechanisms leading to both high crop production and minimal pollution of the environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-03-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-15
    Description: Agronomy, Vol. 8, Pages 48: Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy doi: 10.3390/agronomy8040048 Authors: Bijay- Singh Soil is one of the most important natural resources and medium for plant growth. Anthropogenic interventions such as tillage, irrigation, and fertilizer application can affect the health of the soil. Use of fertilizer nitrogen (N) for crop production influences soil health primarily through changes in organic matter content, microbial life, and acidity in the soil. Soil organic matter (SOM) constitutes the storehouse of soil N. Studies with 15N-labelled fertilizers show that in a cropping season, plants take more N from the soil than from the fertilizer. A large number of long-term field experiments prove that optimum fertilizer N application to crops neither resulted in loss of organic matter nor adversely affected microbial activity in the soil. Fertilizer N, when applied at or below the level at which maximum yields are achieved, resulted in the build-up of SOM and microbial biomass by promoting plant growth and increasing the amount of litter and root biomass added to soil. Only when fertilizer N was applied at rates more than the optimum, increased residual inorganic N accelerated the loss of SOM through its mineralization. Soil microbial life was also adversely affected at very high fertilizers rates. Optimum fertilizer use on agricultural crops reduces soil erosion but repeated application of high fertilizer N doses may lead to soil acidity, a negative soil health trait. Site-specific management strategies based on principles of synchronization of N demand by crops with N supply from all sources including soil and fertilizer could ensure high yields, along with maintenance of soil health. Balanced application of different nutrients and integrated nutrient management based on organic manures and mineral fertilizers also contributed to soil health maintenance and improvement. Thus, fertilizer N, when applied as per the need of the field crops in a balanced proportion with other nutrients and along with organic manures, if available with the farmer, maintains or improves soil health rather than being deleterious.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...