ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Print ISSN: 0264-8172
    Electronic ISSN: 1873-4073
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-11
    Description: The breakup of the Norwegian-Greenland Sea 56 million years ago was associated with massive basaltic magmatism and a short-lived global warming episode, the Paleocene-Eocene Thermal Maximum (PETM). Scientific drilling in 2021 targeted sediments and volcanic rocks on the mid-Norwegian margin to test hypotheses related to the formation of large igneous provinces as well as global warming associated potentially with the igneous activity. High-resolution 3D site survey data facilitated optimal borehole locations during the drilling; key reflections were targeted using the high-resolution 3D data, and PETM stratigraphic intervals were recognized during shipboard core descriptions. Igneous seismic geomorphological interpretation, furthermore, reveals distinct volcanic morphologies on the marginal high, related to different volcanic emplacement environments.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-05-23
    Description: Svalbard is a High Arctic Archipelago at 74–81°N and 15–35 °E under the sovereignty of Norway. All settlements in Svalbard, including the capital of Longyearbyen (population 2400), currently have isolated energy systems with coal or diesel as the main energy source. Geothermal energy is considered as a possible alternative for electricity production, as a heat source in district heating systems or harnessed for heating and cooling using geothermal heat pump installations. In this contribution we present the until now fragmented data sets relevant to characterize and assess the geothermal potential of Svalbard. Data sets include petroleum and deep research boreholes drilled onshore Svalbard, 14 of which have recorded subsurface temperature data at depths below 200 m. Geothermal gradients on Spitsbergen vary from 24 °C/km in the west to 55 °C/km in the south-east, with an average of 33 °C/km. Four deep research boreholes were fully cored and analyzed for thermal conductivity. These analyses were complemented by thermal conductivity calculated from wireline logs in selected boreholes and four measurements on outcrop samples. 1D heat flow modelling on five boreholes calibrated with the measured thermal conductivities offers insights into heat transfer through the heterogeneous sedimentary succession. Offshore petroleum boreholes in the south-western Barents Sea and marine heat flow stations around Svalbard provide a regional framework for discussing spatial variation in heat flow onshore Svalbard, with emphasis on the effects of erosion and deposition on the thermal regime. We conclude that Svalbard's geology is well suited for geothermal exploration and potential production, though challenges related to permafrost, the presence of natural gas, heterogeneous reservoir quality and strongly lateral varying heat flow need to be adequately addressed prior to geothermal energy production. Specifically for Longyearbyen, high geothermal gradients of 40–43 °C/km in the nearest borehole (DH4) suggest promising sub-surface thermal conditions for further exploration of deep geothermal potential near the settlement.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-27
    Description: The Woodfjorden area of northern Spitsbergen (NW Svalbard) offers access to the world’s northernmost onshore thermal springs, extinct Pleistocene alkali basaltic volca- noes and Miocene flood basalts including extensive hyaloclastites. In July 2023, we undertook a 14-day international multi-disciplinary geoscientific expedition to Wood- fjorden-Bockfjorden to investigate the Cenozoic geological evolution of the area. The expedition objectives spanned a wide range of scientific topics from sampling of fluids and gas in the thermal springs to constraining the lithosphere by acquiring magne- totelluric data and sampling volcanic rocks. More specifically, we have 1) conducted gas, fluid and travertine sampling at the thermal springs of Gygrekjelda, Jotunkjeldene and Trollkjeldene, 2) mapped and sampled the Quaternary volcanic centers at Sverrefjel- let and Halvdanpiggen, 3) sampled the Miocene basalts of the Seidfjellet Formation along seven profiles plus the underlying Devonian sedimentary rocks, 4) acquired magnetotelluric data at 12 stations along both coasts of Woodfjorden and Bockfjorden and 5) collected extensive digital geological data (digital outcrop models and photo- spheres) using unmanned aerial vehicles (UAVs; also known as drones). The collected samples are currently being analyzed for, amongst others, petrology, geochemistry and geochronology. In this contribution, we report on the expedition’s background, scientific objectives and present selected preliminary results such as field parameters from the thermal springs (temperature, pH, electrical conductivity), magnetic susceptibility of volcanic rocks and digital outcrop models plus photospheres.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...