ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: legume inoculant ; quality control ; Rhizobium ; standards
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Rhizobial inoculants for use in Canada are regulated and have been evaluated in a formal testing program since 1975. This program is carried out by Agriculture Canada under authority of the Fertilizers Act and involves inoculant strain and formulation registration (with Food Production and Inspection Branch) as well as analysis (by Research Branch) of approximately 220 inoculants and pre-inoculated seed products yearly. Inoculant evaluation is based upon the calculated number of viable rhizobia which would be provided per seed if the inoculant was applied at the manufacturer's recommended rate. Current standards are 103, 104, and 105 viable rhizobia per seed, of the proper cross-inoculation group, for small, intermediate, and large seeded legumes, respectively. Application of these standards means that some inoculants are considered “satisfactory” even though they yield test results as low as 9.4 × 106 rhizobia per gram. No standards are currently applied relative to permissible levels of contaminants in inoculant products, despite the fact that some inoculants contain many more contaminating microorganisms than they doRhizobium cells. The demands of modern sustainable agriculture, taken together with advances in inoculant formulation technology, warrant an increase by a factor of ten in the minimum acceptable Canadian standards for legume inoculants and pre-inoculated seed products.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1986-11-01
    Description: The effects of application of manure and P fertilizer on wheat yields in a fallow-wheat-wheat rotation on a Black Rego Chernozemic clay soil have been studied for 36 yr. The objective of this study was to identify the effects of manure on soil characteristics that could be related to the reported progressive yield increases over time and an apparent improvement in soil tilth. Soil samples were taken in 1982 from the check (no treatment), and from treatments receiving 13.4, 20.2 and 26.9 t ha−1 of manure applied each fallow year, and 112 kg ha−1 of seed-placed 11-48-0 applied to wheat after summerfallow. Soil physical and P-related parameters were determined for depth increments to 30 cm; the total-N and 15N data to 90 cm; other data were for the 0- to 7.5-cm depth. Manure had no effect on bulk density or hydraulic conductivity. However, it increased the total C and humic acid (HA) content of the soil, the percent of soil C as HA-C, the C concentration in humin, and the percent of total soil N as humin-N. Manure significantly increased the percent of HA-N but not humin-N present as amino acid and amino sugar-N, but increased amino acids and the amino sugars in the humin hydrolysate. The net rate of N mineralization and the available forms of inorganic P were all increased significantly by manure. The natural 15N-abundance technique showed that a significant though small proportion of soil N was derived from manure. Manure had no effect on soil microbial biomass C and N, soil respiration, and the quantity of potentially mineralizable N. Applied P had no effect on N-related parameters measured; its effect on available P was not measured. It was concluded that manure increased crop yields by improving the N- and P-supplying power of the soil, and improving the physical environment of the soil through its effects on the humic colloids. Key words: Humic substances, soil P fractions, soil biological properties, natural 15N abundance, net N mineralization
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1983-08-01
    Description: The distribution of NO3-N in the soil, and N uptake by the crop during the first 12 yr of a long-term rotation study at Swift Current, Saskatchewan were studied. A considerable amount of NO3-N appeared to be leached beyond the rooting zone of the cereal crop in years of above average precipitation and also in some relatively dry years with heavy spring rains. Thus, leaching of NO3-N seemed to occur even under continuous wheat rotations. At all times there was considerable NO3-N situated at the 60- to 120-cm depth. In wet years N uptake by the plants reduced the amount of NO3-N located in the subsoil, but in dry years the amount of NO3-N in the subsoil remained higher throughout the growing season. The latter could result in groundwater pollution, especially if such a soil was fallowed the next year. Fall rye (Secale cereale L.) made more efficient use of mineral N than spring-sown crops. In dry years more NO3-N persisted in the root zone of N-fertilized wheat than in the root zone of unfertilized wheat, but in wet and average years there was little difference due to N application. The average rate of net NO3-N production in fallow land from spring thaw to freeze-up (166 days) was 107 kg∙ha−1. Values ranged from about 60 to 175 kg∙ha−1 with the lowest values being obtained during very dry or very wet years. The quantity of N mineralized (kg∙ha−1) between spring thaw and freeze-up was related to precipitation (mm) by the equation Nmin = 29.0 + 0.20 precipitation for the 0- to 60-cm depth (R2 = 0.65*). Key words: Nitrate leaching, N uptake, crop rotations, N mineralization rate
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-11-01
    Description: An 11-yr study was conducted on a coarse-textured Brown Chernozemic soil in the semiarid prairie of southwestern Saskatchewan. Soil was sampled after 3, 7 and 11 yr, and the results were used to assess the influence of fallow frequency and tillage on selected soil quality attributes [e.g., total soil organic C and N, microbial biomass C (MB-C) and microbial biomass N (MB-N), C mineralization (Cmin) and N mineralization (Nmin), and specific respiratory activity (SRA)] in the 0- to 7.5-cm and 7.5- to 15-cm depths. Although it took 11 yr before we observed significant treatment effects on total organic C or N, effects on Cmin and Nmin were observed in 7 yr in the 0- to 7.5-cm depth and by 11 yr, MB and SRA also showed significant treatment effects in this depth. Generally, soil quality attributes were greater in no-tillage (NT) systems than in conventional mechanical tillage (CT) or minimum tillage (MT), and greater in continuous wheat (Triticum aestivum L.) (Cont W) than in fallow-wheat (F-W) systems. With time, the labile constituents tended to increase under the Cont W cropping, but to decrease when F-W was coupled with MT. After 11 yr there was a strong, direct association between the labile attributes (viz., Cmin, Nmin and MB-C) in the 0- to 7.5-cm depth and the mean annual straw produced (kg ha−1yr−1) in the four cropping systems tested. Of the soil quality attributes tested, Cmin and Nmin were the most sensitive indices to tillage and fallow frequency effects. Key words: Mineralizable C, mineralizable N, microbial biomass, specific respiratory activity, crop residues
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-08-01
    Description: The effects of crop rotations and various cultural practices on soil organic matter quantity and quality in a Rego, Black Chernozem with a thin A horizon were determined in a long-term study at Indian Head, Saskatchewan. Variables examined included: fertilization, cropping frequency, green manuring, and inclusion of grass-legume hay crop in predominantly spring wheat (Triticum aestivum L.) production systems. Generally, fertilizer increased soil organic C and microbial biomass in continuous wheat cropping but not in fallow-wheat or fallow-wheat-wheat rotations. Soil organic C, C mineralization (respiration) and microbial biomass C and N increased (especially in the 7.5- to 15-cm depth) with increasing frequency of cropping and with the inclusion of legumes as green manure or hay crop in the rotation. The influence of treatments on soil microbial biomass C (BC) was less pronounced than on microbial biomass N. Carbon mineralization was a good index for delineating treatment effects. Analysis of the microbial biomass C/N ratio indicated that the microbial suite may have been modified by the treatments that increased soil organic matter significantly. The treatments had no effect on specific respiratory activity (CO2-C/BC). However, it appeared that the microbial activity, in terms of respiration, was greater for systems with smaller microbial biomass. Changes in amount and quality of the soil organic matter were associated with estimated amount and C and N content of plant residues returned to the soil. Key words: Specific respiratory activity, crop residues, soil quality, crop rotations
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-11-01
    Description: Inorganic phosphorus (P) is generally believed to be relatively immobile in Chernozemic soils. However, available P (e.g., Olsen-P) has been found at depth in some soils and this has been postulated to be either the result of leaching or of transportation by plant roots. Lagumes, in particular, are believed to be involved in the latter mechanism. A long-term (34-yr) crop rotation study conducted on a heavy clay, thin Black Chernozemic soil at Indian Head, Saskatchewan, was sampled to a depth of 4.5 m in May and September 1991, to determine the influence of fertilization, cropping frequency, legume green manure and legume-grass hay crops on Olsen-P distribution in the soil profile. The results indicated that Olsen-P may indeed leach in Chernozemic soils, especially when fallow-containing cropping systems are fertilized. It also appeared that deep-rooted legumes, such as sweetclover Melilotus officinalis L.) green manure and alfalfa-bromegrass (Medicago sativa L. — Bromus inermis Leyss) hay crops do increase Olsen-P in the subsoil, possibly through root decomposition in situ. Key words: Rotations, bicarbonate-soluble Pi, legumes, green manure, fertilizers
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1974-11-01
    Description: Wood Mountain loam was wetted with water or (NH4)2SO4 solution to provide a factorial combination among three moisture and three NH4-N levels. Samples in polyethylene bags were incubated at 2.5-cm depths in fallow, and in an incubator that simulated the diurnal patterns of temperature fluctuation recorded in the field. During the growing season, treatments were sampled regularly for moisture, NO3− and exchangeable NH4-N. Similar determinations were made on in situ samples taken in fallow Wood Mountain loam. The incubator simulated the effects of growing season temperatures on soil N transformations satisfactorily. Pronounced increases or decreases in temperature led to flushes in N mineralization. However, in the 1972 growing season, temperature was suboptimal and temperature changes were generally small. Consequently, when a stepwise multiple regression technique was used to analyze the data, neither ammonification nor nitrification showed a quantitative relationship to temperature. Comparison of the nitrification occurring in laboratory-incubated soils with that occurring in situ led to the conclusion that 70 to 90% of the NO3-N produced in surface soil resulted from wetting and drying. Estimates of potentially ammonifiable soil N(No) and its rate of mineralization (k) were derived from cumulative ammonification by assuming that the laws of first-order kinetics were applicable. In the 10, 15, and 20% moisture treatments the average No was 27, 41, and 82 ppm, respectively. Under the conditions of this study, the time required to mineralize half of No was about 7 wk.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-11-01
    Description: Rehabilitation of disturbed native prairie is a challenge facing many in the petroleum industry, with implications for prairie ecology and productivity. The purpose of this research was to examine the relative influence of four rehabilitation strategies on biogeochemical processes (i.e., nitrogen availability, plant uptake of nitrogen, biomass production, carbon allocation, and soil biological activity). Seven petroleum wellsites were selected on Chernozemic and Solonetzic soils in southeastern Alberta. Undisturbed native prairie was compared with four seeding treatments: not seeded, a low diversity seed mix commonly used by industry, a low diversity mix of species more typically dominant in native prairie, and a diverse seed mix. Flux of NO3− and NH4+were measured in situ using ion exchange membranes. Soil total C and N were lower and available N higher as a result of disturbance. In the seeded treatments, biomass production was higher and soil nitrogen flux was lower due to higher plant uptake than in the unseeded treatment. Higher initial N availability favoured species with rapid growth and colonization rates, particularly Agropyron dasystachyum [(Hook.) Scribn.] and Agropyron trachycaulum [(Link) Malte]. Seed mix composition and species attributes were deemed to have greater influence on N cycling and biomass production than seed mix diversity. Key words: Nitrogen cycling, plant competition, secondary succession, wheatgrass, biodiversity, prairie
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1907-03-21
    Print ISSN: 0002-1962
    Electronic ISSN: 1435-0645
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-05-01
    Print ISSN: 0002-1962
    Electronic ISSN: 1435-0645
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...