ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Heat shock ; Soybean ; Transgenic tobacco ; Synthetic promoter elements ; Translational control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A series of deletion mutants of a soybean heat shock (hs) gene promoter was generated and linked to the chloramphenicol acetyl transferase (CAT) coding sequence. These chimaeric promoter/reporter gene constructs were introduced into tobacco and thermoregulated expression of CAT activity was examined in leaf extracts. Three different types of gene fusions were tested using two differentBIN19 vector constructions: (1) translational fusion between the N-terminus of the protein coding sequence of the heat shock geneGmhsp17.3-B and CAT; (2) transcriptional fusions between the 5′ nontranslated RNA regions ofGmhsp17.3-B and CAT; and (3) promoter fusions joining the hs promoter upstream sequences to the TATA box sequence of the Δ CaMV 35S-CATter vector. Alternatively, multiple copies of a synthetic deoxyoligonucleotide with the soybean hs consensus element (HSE2) were used. Heat inducible CAT activities were detected except in plants containing a transcriptional fusion devoid of all but 18 nucleotides at the 5′ terminus of the hs gene transcript. CAT activity was detectable in these plants only during the recovery at 25° C after a hs (40° C). Overlapping HSE-like promoter sequences seem to be necessary for the induction of heat inducible transcription of linked genes; synthetic HSE2 sequences have the capacity to reconstitute a hs promoter in combination with a TATA box sequence. Effective translation during hs seems to require sequences in the 5′ nontranslated leader of the hs protein mRNA; these sequences can be functionally replaced by the 5′ leader sequence of the Δ CaMV 35S promoter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Soybean ; Symbiosis ; Nitrogen fixation ; RFLP ; Plant genome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The genetic locus (nts) controlling nitrate-tolerant nodulation, supernodulation, and diminished autoregulation of nodulation of soybean (Glycine max (L.) Merill) was mapped tightly to the pA-132 molecular marker using a restriction fragment length polymorphism (RFLP) detected by subclone pUTG-132a. The nts (nitrate-tolerant symbiotic) locus of soybean was previously detected after its inactivation by chemical mutagenesis. Mutant plant lines were characterized by abundant nodulation (supernodulation) and tolerance to the inhibitory effects of nitrate on nodule cell proliferation and nitrogen fixation. The large number of RFLPs between G. max line nts382 (homozygous for the recessive nts allele) and the more primitive soybean G. soja (P1468.397) allowed the detection of co-segregation of several diagnostic markers with the supernodulation locus in F2 families. We located the nts locus on the tentative RFLP linkage group E about 10 cM distal to pA-36 and directly next to marker pA-132. This very close linkage of the molecular marker and the nts locus may allow the application of this clone as a diagnostic probe in breeding programs as well as an entry point for the isolation of the nts gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Nitrogen fixation ; Novel type of NifU ; Ethane formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA sequence analysis of a 3494-bp HindIII-Bc1I fragment of the Rhodobacter capsulatus nif region A revealed genes that are homologous to ORF6, nifU, nifS, nifV and nifW from Azotobacter vinelandii and Klebsiella pneumoniae. R. capsulatus nifU, which is present in two copies, encodes a novel type of NifU protein. The deduced amino acid sequences of NifUI and NifUII share homology only with the C-terminal domain of NifU from A. vinelandii and K. pneurnoniae. In contrast to nifA andnifB which are almost perfectly duplicated, the predicted amino acid sequences of the two NifU proteins showed only 39% sequence identity. Expression of the ORF6-nifU ISVW operon, which is preceded by a putative σ54-dependent promoter, required the function of NifA and the nif-specific rpoN gene product encoded by nifR4. Analysis of defined insertion and deletion mutants demonstrated that only nifS was absolutely essential for nitrogen fixation in R. capsulatus. Strains carrying mutations in nifV were capable of very slow diazotrophic growth, whereas ORF6, nifU I and nifW mutants as well as a nifU I/nifUII, double mutant exhibited a Nif+ phenotype. Interestingly, R. capsulatus nifV mutants were able to reduce acetylene not only to ethylene but also to ethane under conditions preventing the expression of the alternative nitrogenase system. Homocitrate added to the growth medium repressed ethane formation and cured the NifV phenotype in R. capsulatus. Higher concentrations of homocitrate were necessary to complement the NifV phenotype of a polar nifV mutant (NifV−NifW−), indicating a possible role of NifW either in homocitrate transport or in the incorporation of this compound into the iron-molybdenum cofactor of nitrogenase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...