ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-08-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ingolia, Nicholas T -- Murray, Andrew W -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):948-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology and Bauer Center for Genomics Research, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169717" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biological Evolution ; *Cell Cycle Proteins ; Cells, Cultured ; Dual Specificity Phosphatase 1 ; *Feedback, Physiological ; Immediate-Early Proteins/*metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/*metabolism ; Models, Biological ; *Phosphoprotein Phosphatases ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-07-27
    Description: Genetic selections were used to find peptides that inhibit biological pathways in budding yeast. The peptides were presented inside cells as peptamers, surface loops on a highly expressed and biologically inert carrier protein, a catalytically inactive derivative of staphylococcal nuclease. Peptamers that inhibited the pheromone signaling pathway, transcriptional silencing, and the spindle checkpoint were isolated. Putative targets for the inhibitors were identified by a combination of two-hybrid analysis and genetic dissection of the target pathways. This analysis identified Ydr517w as a component of the spindle checkpoint and reinforced earlier indications that Ste50 has both positive and negative roles in pheromone signaling. Analysis of transcript arrays showed that the peptamers were highly specific in their effects, which suggests that they may be useful reagents in organisms that lack sophisticated genetics as well as for identifying components of existing biological pathways that are potential targets for drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norman, T C -- Smith, D L -- Sorger, P K -- Drees, B L -- O'Rourke, S M -- Hughes, T R -- Roberts, C J -- Friend, S H -- Fields, S -- Murray, A W -- P41-RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):591-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, CA 94143-0444, USA. tnorman@microbia.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417390" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Fungal Proteins/metabolism ; G1 Phase ; Galactose/metabolism ; Lipoproteins/metabolism ; Micrococcal Nuclease ; Mitosis ; Molecular Sequence Data ; Peptide Library ; Peptides/genetics/metabolism/*pharmacology ; Pheromones/*metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases ; Protein-Tyrosine Kinases ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; *Selection, Genetic ; *Signal Transduction ; Spindle Apparatus/drug effects/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-07-15
    Description: The spindle checkpoint was characterized in meiosis of budding yeast. In the absence of the checkpoint, the frequency of meiosis I missegregation increased with increasing chromosome length, reaching 19% for the longest chromosome. Meiosis I nondisjunction in spindle checkpoint mutants could be prevented by delaying the onset of anaphase. In a recombination-defective mutant (spo11Delta), the checkpoint delays the biochemical events of anaphase I, suggesting that chromosomes that are attached to microtubules but are not under tension can activate the spindle checkpoint. Spindle checkpoint mutants reduce the accuracy of chromosome segregation in meiosis I much more than that in meiosis II, suggesting that checkpoint defects may contribute to Down syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shonn, M A -- McCarroll, R -- Murray, A W -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):300-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Department of Physiology, University of California, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10894778" target="_blank"〉PubMed〈/a〉
    Keywords: Biomechanical Phenomena ; Chromosome Segregation/*physiology ; Chromosomes, Fungal ; Down Syndrome/genetics ; Endodeoxyribonucleases ; Esterases/genetics ; Kinetochores/physiology ; Meiosis/genetics/*physiology ; Mutation ; Nondisjunction, Genetic ; Recombination, Genetic ; Saccharomycetales/genetics/*physiology ; Spindle Apparatus/*physiology ; Spores, Fungal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murray, A W -- New York, N.Y. -- Science. 2001 Feb 23;291(5508):1499-502.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA. amurray@mcb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11234079" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Cell Cycle ; *Cell Division ; Cell Line ; Cells, Cultured ; Centrioles/*physiology ; Centrosome/*physiology ; Chromosome Segregation ; DNA Replication ; Microtubules/physiology ; Mitosis ; Proteins/physiology ; Saccharomycetales/cytology/physiology ; Spindle Apparatus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-11-14
    Description: The discovery of anticancer drugs is now driven by the numerous molecular alterations identified in tumor cells over the past decade. To exploit these alterations, it is necessary to understand how they define a molecular context that allows increased sensitivity to particular compounds. Traditional genetic approaches together with the new wealth of genomic information for both human and model organisms open up strategies by which drugs can be profiled for their ability to selectively kill cells in a molecular context that matches those found in tumors. Similarly, it may be possible to identify and validate new targets for drugs that would selectively kill tumor cells with a particular molecular context. This article outlines some of the ways that yeast genetics can be used to streamline anticancer drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartwell, L H -- Szankasi, P -- Roberts, C J -- Murray, A W -- Friend, S H -- N01-BC65017/BC/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 7;278(5340):1064-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Project, Molecular Pharmacology Department, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9353181" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antineoplastic Agents/pharmacology/therapeutic use ; *Drug Design ; *Drug Screening Assays, Antitumor ; Humans ; Mutation ; Neoplasms/*drug therapy/genetics ; Signal Transduction ; Yeasts/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-03
    Description: We review the recent advances in understanding transitions within the cell cycle. These have come from both genetic and biochemical approaches. We discuss the phylogenetic conservation of the mechanisms that induce mitosis and their implications for other transitions in the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murray, A W -- Kirschner, M W -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):614-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, School of Medicine, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2683077" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Cycle ; *Genes, Regulator ; Interphase ; Mitosis ; *Models, Biological ; Models, Genetic ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-07-11
    Description: The spindle checkpoint delays cell cycle progression until microtubules attach each pair of sister chromosomes to opposite poles of the mitotic spindle. Following sister chromatid separation, however, the checkpoint ignores chromosomes whose kinetochores are attached to only one spindle pole, a state that activates the checkpoint prior to metaphase. We demonstrate that, in budding yeast, mutual inhibition between the anaphase-promoting complex (APC) and Mps1, an essential component of the checkpoint, leads to sustained inactivation of the spindle checkpoint. Mps1 protein abundance decreases in anaphase, and Mps1 is a target of the APC. Furthermore, expression of Mps1 in anaphase, or repression of the APC in anaphase, reactivates the spindle checkpoint. This APC-Mps1 feedback circuit allows cells to irreversibly inactivate the checkpoint during anaphase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palframan, William J -- Meehl, Janet B -- Jaspersen, Sue L -- Winey, Mark -- Murray, Andrew W -- GM43987/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- R37 GM043987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):680-4. Epub 2006 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825537" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase/*physiology ; Anaphase-Promoting Complex-Cyclosome ; Cdc20 Proteins ; Cell Cycle Proteins/metabolism ; Chromosomes, Fungal/physiology ; Feedback, Physiological ; GTP-Binding Proteins/metabolism ; Kinetochores/physiology ; Mad2 Proteins ; Mitosis ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Protein-Tyrosine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*cytology/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Securin ; Spindle Apparatus/*physiology ; Ubiquitin-Protein Ligase Complexes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-04-11
    Description: Synonymous mutations do not alter the encoded protein, but they can influence gene expression. To investigate how, we engineered a synthetic library of 154 genes that varied randomly at synonymous sites, but all encoded the same green fluorescent protein (GFP). When expressed in Escherichia coli, GFP protein levels varied 250-fold across the library. GFP messenger RNA (mRNA) levels, mRNA degradation patterns, and bacterial growth rates also varied, but codon bias did not correlate with gene expression. Rather, the stability of mRNA folding near the ribosomal binding site explained more than half the variation in protein levels. In our analysis, mRNA folding and associated rates of translation initiation play a predominant role in shaping expression levels of individual genes, whereas codon bias influences global translation efficiency and cellular fitness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902468/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902468/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kudla, Grzegorz -- Murray, Andrew W -- Tollervey, David -- Plotkin, Joshua B -- BB/D019621/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/DO19621/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/DO19621/1/Wellcome Trust/United Kingdom -- P50 GM068763/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):255-8. doi: 10.1126/science.1170160.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Program in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359587" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Base Composition ; Cloning, Molecular ; *Codon ; Escherichia coli/*genetics/growth & development/metabolism ; *Gene Expression ; Gene Library ; Genes, Synthetic ; Green Fluorescent Proteins/*genetics/metabolism ; Mutation ; Nucleic Acid Conformation ; Protein Biosynthesis ; RNA Stability ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Messenger/chemistry/*genetics/metabolism ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-07-25
    Description: Chromosome movements and spindle dynamics were visualized in living cells of the budding yeast Saccharomyces cerevisiae. Individual chromosomal loci were detected by expression of a protein fusion between green fluorescent protein (GFP) and the Lac repressor, which bound to an array of Lac operator binding sites integrated into the chromosome. Spindle microtubules were detected by expression of a protein fusion between GFP and Tub1, the major alpha tubulin. Spindle elongation and chromosome separation exhibited biphasic kinetics, and centromeres separated before telomeres. Budding yeast did not exhibit a conventional metaphase chromosome alignment but did show anaphase A, movement of the chromosomes to the poles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Straight, A F -- Marshall, W F -- Sedat, J W -- Murray, A W -- New York, N.Y. -- Science. 1997 Jul 25;277(5325):574-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Box 0444, School of Medicine, University of California at San Francisco, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9228009" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Bacterial Proteins/metabolism ; Centromere/chemistry/physiology ; Chromatids/physiology ; Chromosomes, Fungal/chemistry/*physiology ; *Escherichia coli Proteins ; Green Fluorescent Proteins ; Lac Repressors ; Luminescent Proteins ; *Metaphase ; Microscopy, Fluorescence ; Microtubules/ultrastructure ; *Mitosis ; Movement ; Operator Regions, Genetic ; Recombinant Fusion Proteins ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/*cytology ; Spindle Apparatus/physiology/ultrastructure ; Telomere/physiology ; Tubulin/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-03-07
    Description: The spindle checkpoint regulates the cell division cycle by keeping cells with defective spindles from leaving mitosis. In the two-hybrid system, three proteins that are components of the checkpoint, Mad1, Mad2, and Mad3, were shown to interact with Cdc20, a protein required for exit from mitosis. Mad2 and Mad3 coprecipitated with Cdc20 at all stages of the cell cycle. The binding of Mad2 depended on Mad1 and that of Mad3 on Mad1 and Mad2. Overexpression of Cdc20 allowed cells with a depolymerized spindle or damaged DNA to leave mitosis but did not overcome the arrest caused by unreplicated DNA. Mutants in Cdc20 that were resistant to the spindle checkpoint no longer bound Mad proteins, suggesting that Cdc20 is the target of the spindle checkpoint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, L H -- Lau, L F -- Smith, D L -- Mistrot, C A -- Hardwick, K G -- Hwang, E S -- Amon, A -- Murray, A W -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1041-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California at San Francisco, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461437" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Cadherins ; Calcium-Binding Proteins/metabolism ; *Carrier Proteins ; Cdc20 Proteins ; Cdh1 Proteins ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; DNA Damage ; DNA Replication ; Fungal Proteins/chemistry/*metabolism ; Ligases/metabolism ; Mad2 Proteins ; *Mitosis ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/metabolism ; Phosphoproteins/metabolism ; *Repressor Proteins ; Saccharomyces cerevisiae/*cytology/*metabolism ; *Saccharomyces cerevisiae Proteins ; Spindle Apparatus/*metabolism ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...