ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-01-11
    Description: Sex determination in fungi is controlled by a small, specialized region of the genome in contrast to the large sex-specific chromosomes of animals and some plants. Different gene combinations reside at these mating-type (MAT) loci and confer sexual identity; invariably they encode homeodomain, alpha-box, or high mobility group (HMG)-domain transcription factors. So far, MAT loci have been characterized from a single monophyletic clade of fungi, the Dikarya (the ascomycetes and basidiomycetes), and the ancestral state and evolutionary history of these loci have remained a mystery. Mating in the basal members of the kingdom has been less well studied, and even their precise taxonomic inter-relationships are still obscure. Here we apply bioinformatic and genetic mapping to identify the sex-determining (sex) region in Phycomyces blakesleeanus (Zygomycota), which represents an early branch within the fungi. Each sex allele contains a single gene that encodes an HMG-domain protein, implicating the HMG-domain proteins as an earlier form of fungal MAT loci. Additionally, one allele also contains a copy of a unique, chromosome-specific repetitive element, suggesting a generalized mechanism for the earliest steps in the evolution of sex determination and sex chromosome structure in eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Idnurm, Alexander -- Walton, Felicia J -- Floyd, Anna -- Heitman, Joseph -- England -- Nature. 2008 Jan 10;451(7175):193-6. doi: 10.1038/nature06453.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18185588" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Chromosomes, Fungal/genetics ; Computational Biology ; Fertility/genetics ; Fungal Proteins/chemistry/genetics ; Fungi/classification/*genetics ; Genes, Fungal/*genetics ; Genes, Mating Type, Fungal/genetics ; HMG-Box Domains ; Heterozygote ; High Mobility Group Proteins/chemistry/genetics ; Molecular Sequence Data ; *Phylogeny ; Recombination, Genetic/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; *Sex ; *Sex Determination Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Grass and forage science 58 (2003), S. 0 
    ISSN: 1365-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Tissue culture-induced variants (somaclones) of reed canarygrass (Phalaris arundinacea L.) were developed from callus cells of aseptic spikelet cultures. Molecular polymorphism of the populations of somaclones and spikelet-donor plants as natural vegetative clones were compared by the application of polymerase chain reaction (PCR)-based techniques of random amplified polymorphic DNA (RAPD)-, simple sequence repeat (SSR)-, and inter-simple sequence repeat (ISSR)-PCR to genomic DNA samples. The genetic diversity was higher in the somaclones compared with vegetative clones as measured by the maximum genetic distance (MaxGD) which increased from 0·401 (vegetative clones) to 0·498 (somaclones). Along with this change, the minimum genetic distance (MinGD) decreased from 0·20 (control plants) to 0·06 (somaclones) which demonstrated that genetic changes occurred not only in a positive (dissimilarity, MaxGD), but also in a negative (similarity, MinGD) direction. Structural carbohydrate analyses were also performed on the leaves to compare the somaclones with the donor vegetative clones. The mean neutral-detergent and acid-detergent fibre concentrations of the leaves of the somaclones were about 0·20 lower than the donor vegetative clones suggesting that increases in the digestibility could be obtained from the somaclonal material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2018-06-01
    Description: Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. Rhizopus species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 Rhizopus strains, classified into four species isolated from habitats of industrial, medical and environmental importance. The phylogeny indicates that the genus Rhizopus consists of three major clades, with R. microsporus as the basal species and the sister lineage to R. stolonifer and two closely related species R. arrhizus and R. delemar . A comparative analysis of the mating type locus across Rhizopus reveals that its structure is flexible even between different species in the same genus, but shows similarities between Rhizopus and other mucoralean fungi. The topology of single-gene phylogenies built for two genes involved in mating is similar to the phylogenomic tree. Comparison of the total length of the genome assemblies showed that genome size varies by as much as threefold within a species and is driven by changes in transposable element copy numbers and genome duplications.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Naturalis Biodiversity Center
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 46, pp. 1-25
    Publication Date: 2024-04-08
    Description: Here we explore the diversity of one morphologically distinguishable genus in the Mucoromycotina, Backusella, in south-eastern Australia. We isolated more than 200 strains from locations across the states of Victoria and Tasmania. Characterization of these strains using a combination of approaches including morphology, sucrose utilization and whole genome sequencing for 13 strains, revealed 10 new species. The genetic basis for interspecies variation in sucrose utilization was found to be the presence of a gene encoding an invertase enzyme. The genus Backusella is revised and a new key for species identification produced. Given that we have more than doubled the number of species in this genus, this work demonstrates that there may be considerable undiscovered species diversity in the early diverging fungal lineages.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Backusella ; genome sequencing ; invertase ; Mucorales ; new taxa ; polyphasic taxonomy ; zygospore
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...