ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-10-20
    Description: Nuclear import of transfer DNA (T-DNA) is a central event in Agrobacterium transformation of plant cells and is thought to occur by the hijacking of certain host cell proteins. The T-DNA-associated virulence protein VirE2 mediates this process by binding to the nuclear import machinery via the host cell factor VIP1, whose role in plants has been so far unknown. Here we show that VIP1 is a transcription factor that is a direct target of the Agrobacterium-induced mitogen-activated protein kinase (MAPK) MPK3. Upon phosphorylation by MPK3, VIP1 relocalizes from the cytoplasm to the nucleus and regulates the expression of the PR1 pathogenesis-related gene. MAPK-dependent phosphorylation of VIP1 is necessary for VIP1-mediated Agrobacterium T-DNA transfer, indicating that Agrobacterium abuses the MAPK-targeted VIP1 defense signaling pathway for nuclear delivery of the T-DNA complex as a Trojan horse.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Djamei, Armin -- Pitzschke, Andrea -- Nakagami, Hirofumi -- Rajh, Iva -- Hirt, Heribert -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):453-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947581" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Agrobacterium tumefaciens/*genetics/pathogenicity ; Arabidopsis/immunology/*metabolism/*microbiology ; Arabidopsis Proteins/*metabolism ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; DNA, Bacterial/genetics/*metabolism ; DNA, Single-Stranded/genetics/metabolism ; Enzyme Activation ; Flagellin/immunology ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/*metabolism ; Phosphorylation ; Plant Leaves/metabolism/microbiology ; Plants, Genetically Modified ; Recombinant Fusion Proteins/metabolism ; *Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-07
    Description: Maize smut caused by the fungus Ustilago maydis is a widespread disease characterized by the development of large plant tumours. U. maydis is a biotrophic pathogen that requires living plant tissue for its development and establishes an intimate interaction zone between fungal hyphae and the plant plasma membrane. U. maydis actively suppresses plant defence responses by secreted protein effectors. Its effector repertoire comprises at least 386 genes mostly encoding proteins of unknown function and expressed exclusively during the biotrophic stage. The U. maydis secretome also contains about 150 proteins with probable roles in fungal nutrition, fungal cell wall modification and host penetration as well as proteins unlikely to act in the fungal-host interface like a chorismate mutase. Chorismate mutases are key enzymes of the shikimate pathway and catalyse the conversion of chorismate to prephenate, the precursor for tyrosine and phenylalanine synthesis. Root-knot nematodes inject a secreted chorismate mutase into plant cells likely to affect development. Here we show that the chorismate mutase Cmu1 secreted by U. maydis is a virulence factor. The enzyme is taken up by plant cells, can spread to neighbouring cells and changes the metabolic status of these cells through metabolic priming. Secreted chorismate mutases are found in many plant-associated microbes and might serve as general tools for host manipulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Djamei, Armin -- Schipper, Kerstin -- Rabe, Franziska -- Ghosh, Anupama -- Vincon, Volker -- Kahnt, Jorg -- Osorio, Sonia -- Tohge, Takayuki -- Fernie, Alisdair R -- Feussner, Ivo -- Feussner, Kirstin -- Meinicke, Peter -- Stierhof, York-Dieter -- Schwarz, Heinz -- Macek, Boris -- Mann, Matthias -- Kahmann, Regine -- England -- Nature. 2011 Oct 5;478(7369):395-8. doi: 10.1038/nature10454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21976020" target="_blank"〉PubMed〈/a〉
    Keywords: Chorismate Mutase/*metabolism ; Cytoplasm/enzymology ; Gene Expression Regulation, Plant ; Genetic Complementation Test ; Host-Pathogen Interactions ; Metabolome ; Models, Biological ; Plant Proteins/metabolism ; Plastids/enzymology ; Protein Multimerization ; Saccharomyces cerevisiae/genetics ; Salicylic Acid/metabolism ; Two-Hybrid System Techniques ; Ustilago/*enzymology/*pathogenicity ; Virulence Factors/genetics/*metabolism ; Zea mays/*metabolism/*microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-09
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...