ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-06-12
    Description: Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled 〉94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myburg, Alexander A -- Grattapaglia, Dario -- Tuskan, Gerald A -- Hellsten, Uffe -- Hayes, Richard D -- Grimwood, Jane -- Jenkins, Jerry -- Lindquist, Erika -- Tice, Hope -- Bauer, Diane -- Goodstein, David M -- Dubchak, Inna -- Poliakov, Alexandre -- Mizrachi, Eshchar -- Kullan, Anand R K -- Hussey, Steven G -- Pinard, Desre -- van der Merwe, Karen -- Singh, Pooja -- van Jaarsveld, Ida -- Silva-Junior, Orzenil B -- Togawa, Roberto C -- Pappas, Marilia R -- Faria, Danielle A -- Sansaloni, Carolina P -- Petroli, Cesar D -- Yang, Xiaohan -- Ranjan, Priya -- Tschaplinski, Timothy J -- Ye, Chu-Yu -- Li, Ting -- Sterck, Lieven -- Vanneste, Kevin -- Murat, Florent -- Soler, Marcal -- Clemente, Helene San -- Saidi, Naijib -- Cassan-Wang, Hua -- Dunand, Christophe -- Hefer, Charles A -- Bornberg-Bauer, Erich -- Kersting, Anna R -- Vining, Kelly -- Amarasinghe, Vindhya -- Ranik, Martin -- Naithani, Sushma -- Elser, Justin -- Boyd, Alexander E -- Liston, Aaron -- Spatafora, Joseph W -- Dharmwardhana, Palitha -- Raja, Rajani -- Sullivan, Christopher -- Romanel, Elisson -- Alves-Ferreira, Marcio -- Kulheim, Carsten -- Foley, William -- Carocha, Victor -- Paiva, Jorge -- Kudrna, David -- Brommonschenkel, Sergio H -- Pasquali, Giancarlo -- Byrne, Margaret -- Rigault, Philippe -- Tibbits, Josquin -- Spokevicius, Antanas -- Jones, Rebecca C -- Steane, Dorothy A -- Vaillancourt, Rene E -- Potts, Brad M -- Joubert, Fourie -- Barry, Kerrie -- Pappas, Georgios J -- Strauss, Steven H -- Jaiswal, Pankaj -- Grima-Pettenati, Jacqueline -- Salse, Jerome -- Van de Peer, Yves -- Rokhsar, Daniel S -- Schmutz, Jeremy -- England -- Nature. 2014 Jun 19;510(7505):356-62. doi: 10.1038/nature13308. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa. ; 1] Laboratorio de Genetica Vegetal, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil [2] Programa de Ciencias Genomicas e Biotecnologia - Universidade Catolica de Brasilia SGAN 916, 70790-160 Brasilia, Brazil. ; 1] US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA [2] Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. ; US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA. ; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35801, USA. ; Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa. ; Laboratorio de Bioinformatica, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil. ; Laboratorio de Genetica Vegetal, EMBRAPA Recursos Geneticos e Biotecnologia, EPQB Final W5 Norte, 70770-917 Brasilia, Brazil. ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. ; Department of Plant Biotechnology and Bioinformatics (VIB), Ghent University, Technologiepark 927, B-9000 Ghent, Belgium. ; INRA/UBP UMR 1095, 5 Avenue de Beaulieu, 63100 Clermont Ferrand, France. ; Laboratoire de Recherche en Sciences Vegetales, UMR 5546, Universite Toulouse III, UPS, CNRS, BP 42617, 31326 Castanet Tolosan, France. ; 1] Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver V6T 1Z4, Canada. ; Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, D-48149, Muenster, Germany. ; 1] Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, D-48149, Muenster, Germany [2] Department of Bioinformatics, Institute for Computer Science, University of Duesseldorf, Universitatsstrasse 1, 40225 Dusseldorf, Germany. ; Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, USA. ; 1] Department of Botany and Plant Pathology, Oregon State University, 2082-Cordley Hall, Corvallis, Oregon 97331, USA [2] Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA. ; Department of Botany and Plant Pathology, Oregon State University, 2082-Cordley Hall, Corvallis, Oregon 97331, USA. ; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA. ; 1] Laboratorio de Biologia Evolutiva Teorica e Aplicada, Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil [2] Departamento de Biotecnologia, Escola de Engenharia de Lorena-Universidade de Sao Paulo (EEL-USP), CP116, 12602-810, Lorena-SP, Brazil [3] Laboratorio de Genetica Molecular Vegetal (LGMV), Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil. ; Laboratorio de Genetica Molecular Vegetal (LGMV), Departamento de Genetica, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, 21949900 Rio de Janeiro, Brazil. ; Research School of Biology, Australian National University, Canberra 0200, Australia. ; 1] Laboratoire de Recherche en Sciences Vegetales, UMR 5546, Universite Toulouse III, UPS, CNRS, BP 42617, 31326 Castanet Tolosan, France [2] IICT/MNE; Palacio Burnay - Rua da Junqueira, 30, 1349-007 Lisboa, Portugal [3] IBET/ITQB, Av. Republica, Quinta do Marques, 2781-901 Oeiras, Portugal. ; 1] IICT/MNE; Palacio Burnay - Rua da Junqueira, 30, 1349-007 Lisboa, Portugal [2] IBET/ITQB, Av. Republica, Quinta do Marques, 2781-901 Oeiras, Portugal. ; Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, USA. ; Dep. de Fitopatologia, Universidade Federal de Vicosa, Vicosa 36570-000, Brazil. ; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil. ; Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia. ; GYDLE, 1363 av. Maguire, suite 301, Quebec, Quebec G1T 1Z2, Canada. ; Department of Environment and Primary Industries, Victorian Government, Melbourne, Victoria 3085, Australia. ; Melbourne School of Land and Environment, University of Melbourne, Melbourne, Victoria 3010, Australia. ; School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia. ; 1] School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia [2] Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland 4558, Australia. ; 1] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, Private bag X20, Pretoria 0028, South Africa. ; Departamento de Biologia Celular, Universidade de Brasilia, Brasilia 70910-900, Brazil. ; 1] Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa [2] Department of Plant Biotechnology and Bioinformatics (VIB), Ghent University, Technologiepark 927, B-9000 Ghent, Belgium. ; 1] US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA [2] HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919147" target="_blank"〉PubMed〈/a〉
    Keywords: Eucalyptus/classification/*genetics ; Evolution, Molecular ; Genetic Variation ; *Genome, Plant ; Inbreeding ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 96 (1998), S. 1162-1169 
    ISSN: 1432-2242
    Keywords: Key words Wheat ; Russian wheat aphid ; Dn2 resistance gene ; RAPD ; SCAR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-12
    Description: Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis , while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-27
    Description: Long-lived tree species are subject to attack by various pests and pathogens during their lifetime. This problem is exacerbated by climate change, which may increase the host range for pathogens and extend the period of infestation by pests. Plant defences may involve preformed barriers or induced resistance mechanisms based on recognition of the invader, complex signalling cascades, hormone signalling, activation of transcription factors and production of pathogenesis-related (PR) proteins with direct antimicrobial or anti-insect activity. Trees have evolved some unique defence mechanisms compared with well-studied model plants, which are mostly herbaceous annuals. The genome sequence of Eucalyptus grandis W. Hill ex Maiden has recently become available and provides a resource to extend our understanding of defence in large woody perennials. This review synthesizes existing knowledge of defence mechanisms in model plants and tree species and features mechanisms that may be important for defence in Eucalyptus , such as anatomical variants and the role of chemicals and proteins. Based on the E. grandis genome sequence, we have identified putative PR proteins based on sequence identity to the previously described plant PR proteins. Putative orthologues for PR-1, PR-2, PR-4, PR-5, PR-6, PR-7, PR-8, PR-9, PR-10, PR-12, PR-14, PR-15 and PR-17 have been identified and compared with their orthologues in Populus trichocarpa Torr. & A. Gray ex Hook and Arabidopsis thaliana (L.) Heynh. The survey of PR genes in Eucalyptus provides a first step in identifying defence gene targets that may be employed for protection of the species in future. Genomic resources available for Eucalyptus are discussed and approaches for improving resistance in these hardwood trees, earmarked as a bioenergy source in future, are considered.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-01
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-05-01
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-03-01
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...