ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2012-11-16
    Description: The volatility of submicron atmospheric aerosol particles was investigated at a boreal forest site in Hyytiälä, Finland from January 2008 to May 2010. These long-term observations allowed for studying the seasonal behavior of aerosol evaporation with a special focus on compounds that remained in the aerosol phase at 280 °C. The temperature-response of evaporation was also studied by heating the aerosol sample step-wise to six temperatures ranging from 80 °C to 280 °C. The mass fraction remaining after heating (MFR) was determined from the measured particle number size distributions before and after heating assuming a constant particle density (1.6 g cm−3). On average 19% of the total aerosol mass remained in the particulate phase at 280 °C. The particles evaporated less at low ambient temperatures during winter as compared with the warmer months. Black carbon (BC) fraction of aerosol mass correlated positively with the MFR at 280 °C, but could not explain it completely: most of the time a notable fraction of this non-volatile residual was something other than BC. Using additional information on ambient meteorological conditions and results from an Aerodyne aerosol mass spectrometer (AMS), the chemical composition of MFR at 280 °C and its seasonal behavior was further examined. Correlation analysis with ambient temperature and mass fractions of polycyclic aromatic hydrocarbons (PAHs) indicated that MFR at 280 °C is probably affected by anthropogenic emissions. On the other hand, results from the AMS analysis suggested that there may be very low-volatile organics, possibly organonitrates, in the non-volatile (at 280 °C) fraction of aerosol mass.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-08
    Description: The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland, is presented. The focus lies on online measurements of organic acids, which were achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by aerosol mass spectrometry (AMS) measurements and Fourier transform infrared spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas-phase measurements solely and measuring the sum of gas and particle phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2 mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene-derived organic acids (limonic acid and ketolimononic acid) and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da) in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol−1. However, a plume of aged biomass burning aerosol, arriving at Hyytiälä from Russia, contained organic compounds up to 800 Da (MWom≈450 g mol−1), showing that the average molecular weight can vary significantly. The high measurement frequency of both AMS and APCI-IT-MS enabled the partitioning of selected organic acids between gas and particle phase as a function of the total particulate mass to be quantified. Surprisingly high fractions of the higher molecular weight organic acids were observed to reside in the gas phase. These observations might be a consequence of large equilibration timescales for semi-solid boreal forest aerosol, as has been recently hypothesized by Shiraiwa and Seinfeld (2012).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-17
    Description: Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFGs). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4–5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning organic aerosol and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half of the oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at Hyytiälä, the summertime biogenic OM is 1.5 to 3 times larger than springtime biogenic OM (0.64 μg m−3 and 0.4 μg m−3, measured in 2005 and 2007, respectively), even though it contributed only 35% of OM. The biomass burning factor contributed 25% of OM on average and up to 62% of OM during three periods of transported biomass burning emissions: 26–28 July, 29–30 July, and 8–9 August, with OFG consisting mostly of carbonyl (41%) and alcohol (25%) groups. The high summertime terrestrial biogenic OM (1.7 μg m−3) and the high biomass burning contributions (1.2 μg m−3) were likely due to the abnormally high temperatures that resulted in both stressed boreal forest conditions with high regional BVOC emissions and numerous wildfires in upwind regions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-05-02
    Description: The volatility of atmospheric 20–500 nm aerosol particles was investigated at a boreal forest site in Hyytiälä, Finland. Measurements were performed continuously between January 2008 and May 2010. The ambient aerosol sample was heated step-wise to six temperatures ranging from 80 °C to 280 °C and the total mass concentration of aerosol particles was determined from the measured particle number size distributions before and after heating assuming particle density of 1.6 g cm−3. On average 19% of the total aerosol mass stayed in the condensed phase even after heating to 280 °C. The observed non-volatile residual at 280 °C had a seasonal pattern; during winter the aerosol mass fraction remaining after heating was the highest and during summer the lowest. Black carbon concentrations correlated positively with the non-volatile fraction of the aerosol, but could not explain the presence of the non-volatile material completely: most of the time a notable fraction of the non-volatile residual was something else than black carbon. Using additional information on ambient meteorological conditions and trajectories, and results from an Aerodyne aerosol mass spectrometer (AMS), the chemical composition of the non-volatile residual and its seasonal behavior was further examined. During winter and spring months the non-volatile mass fraction had a marked positive linear correlation with pollutant trace gases, such as CO, SO2 and NOx. This suggests an anthropogenic influence on the non-volatile fraction of the aerosol in winter and spring. The anthropogenic effect on the formation of the low-volatility material was furthermore supported by observed correlation between the non-volatile residual and the mass fractions of poly-aromatic hydrocarbons (PAHs) sampled simultaneously at the site. During the fall the aerosol particles had relatively more non-volatile material in them when the aerosol mass fractions of organic nitrate and organics in the AMS data were high, and when the measurement site was influenced by clean air masses passing over the forest. Thus, the existence of very low volatile organic nitrates in the aerosol phase can be speculated.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-11
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-02
    Description: The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the comparison include long-term station observations, satellite and ground-based remote sensing products, and complex datasets of aerosol chemical composition and number size distribution from recent field campaigns. This is the first time these comprehensive measurements of aerosol characteristics in Europe are used to evaluate a regional chemistry transport model. We show a detailed analysis of the simulated size-resolved chemical composition under different meteorological conditions. Mean, variability and spatial distribution of the concentrations of O3 and NOx are well reproduced. SO2 is found to be overestimated, simulated PM2.5 and PM10 levels are on average underestimated, as is AOD. We find indications of an overestimation of shipping emissions. Time evolution of aerosol chemical composition is captured, although some biases are found in relative composition. Nitrate aerosol components are on average overestimated, and sulfates underestimated. The accuracy of simulated organics depends strongly on season and location. While strongly underestimated during summer, organic mass is comparable in spring and autumn. We see indications for an overestimated fractional contribution of primary organic matter in urban areas and an underestimation of SOA at many locations. Aerosol number concentrations compare well with measurements for larger size ranges, but overestimations of particle number concentration with factors of 2–5 are found for particles smaller than 50 nm. Size distribution characteristics are often close to measurements, but show discrepancies at polluted sites. Suggestions for further improvement of the modeling system consist of the inclusion of a revised secondary organic aerosols scheme, aqueous-phase chemistry and improved aerosol boundary conditions. Our work sets the basis for subsequent studies of aerosol characteristics and climate impacts with COSMO-ART, and highlights areas where improvements are necessary for current regional modeling systems in general.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-05
    Description: Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of EUCAARI and the intensive campaigns of EMEP during 2008 (May–June and September–October) and 2009 (February–March). In this paper we focus on the identification of the main organic aerosol sources and we propose a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 datasets accounting for urban, rural, remote and high altitude sites and therefore it is likely suitable for the treatment of AMS-related ambient datasets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling evaluation purposes.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-05
    Description: The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland is presented. The focus lies on online measurements of organic acids, which was achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by Aerosol Mass Spectrometry (AMS) measurements and Fourier-Transform Infrared Spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas phase measurements solely and measuring the sum of gas- and particle-phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2-mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene derived organic acids (limonic acid and ketolimononic acid) and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da) in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol−1. However, a plume of aged biomass burning aerosol, arriving at Hyytiälä from Russia, contained organic compounds up to 800 Da (MWom ≈ 450 g mol−1), showing that the average molecular weight can vary significantly. The high measurement frequency of both, AMS and APCI-IT-MS, enabled the partitioning of selected organic acids between gas- and particle-phase as a function of the total particulate mass to be quantified. Surprisingly high fractions of the higher molecular weight organic acids were observed to reside in the gas phase. These observations might be a consequence of large equilibration timescales for semi-solid boreal forest aerosol, as it has been recently hypothesised by Shiraiwa and Seinfeld (2012).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-15
    Description: Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that Boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFG). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4–5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning BBOA and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at Hyytiälä, the summertime biogenic OM is 1.5 to 3 times larger than springtime biogenic OM (0.64 μg m−3 and 0.4 μg m−3, measured in 2005 and 2007, respectively), even though it contributed only 35% of OM. The biomass burning factor contributed 25% OM on average and up to 62% OM during three periods of transported biomass burning emissions: 26–28 July, 29–30 July, and 8–9 August, with OFG consisting mostly of carbonyl (41%) and alcohol (25%) groups. The high summertime terrestrial biogenic OM (1.7 μg m−3) and the high biomass burning contributions (1.2 μg m−3) were likely due to the abnormally high temperatures that resulted in both stressed boreal forest conditions with high regional BVOC emissions and numerous wildfires in upwind regions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-07
    Description: The Volatility-Hygroscopicity Tandem Differential Mobility Analyzer (VH-TDMA) was applied to study the hygroscopicity and volatility properties of submicron atmospheric aerosol in a boreal forest environment in Hyytiälä, Finland during the summer of 2010. Aitken and accumulation mode particles (50 nm, 75 nm and 110 nm) were investigated. The results suggest that the particles were internally mixed at all sizes. Hygroscopicity was found to increase with size. The relative mass fraction of organics and SO42− is probably the major contributor to the fluctuation of the hygroscopicity for all particle sizes. The Cloud Condensation Nuclei counter (CCNc)-derived hygroscopicity parameter κ was slightly higher than κ calculated from VH-TDMA data under sub-saturated conditions, which can be explained by the fact that particulate organics have a different degree of dissolution in sub- and supersaturated conditions. Also, the size-resolved volatility properties of particles were investigated. Upon heating, small particles evaporated more compared to large particles. There was a significant amount of aerosol volume (non-volatile material) left even at heating temperatures above 280 °C. Using size resolved volatility-hygroscopicity analysis, we concluded that there was always hygroscopic material remaining in the particles of different sizes at all different heating temperatures, even above 280 °C. This indicates that the observed non-volatile aerosol material was not consisting solely of black carbon.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...