ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2015-08-26
    Print ISSN: 1944-7442
    Electronic ISSN: 1944-7450
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley on behalf of American Institute of Chemical Engineers.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology; Instrumentation and Photography
    Type: GSFC-E-DAA-TN25376 , Earth Science Technology Forum (ESTF) 2015; Jun 23, 2015 - Jun 25, 2015; Pasadena, California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: An optimal estimation scheme is employed to demonstrate the utility of using multi-band radar observations for estimating supercooled liquid profiles. Qualitative comparisons with microphysical probe images show that the retrievals are capable of producing supercooled liquid consistent with in situ data. Finally, a path forward for quantifying performance and extending the study to a more robust measurement suite is given.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64345 , 2018 IGARSS; Jul 22, 2018 - Jul 27, 2018; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is developing a compact, light-weight, and low power midwave-infrared (MWIR) imager called the Compact Midwave Imaging Sensor (CMIS), under the support of the NASA Earth Science Technology Office Instrument Incubator Program. The goal of this CMIS instrument development and demonstration project is to increase the technical readiness of CMIS, a multi-spectral sensor capable of retrieving 3D winds and cloud heights 24/7, for a space mission. The CMIS instrument employs an advanced MWIR detector that requires less cooling than traditional technologies and thus permits a compact, low-power design, which enables accommodation on small spacecraft such as CubeSats. CMIS provides the critical midwave component of a multi-spectral sensor suite that includes a high-resolution Day-Night Band and a longwave infrared (LWIR) imager to provide global cloud characterization and theater weather imagery. In this presentation, an overview of the CMIS project, including the high-level sensor design, the concept of operations, and measurement capability will be presented. System performance for a variety of different scenes generated by a cloud resolving model (CRM) will also be discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65491 , SPIE Asia-Pacific Remote Sensing; Sep 24, 2018 - Sep 26, 2018; Honolulu, HI; United States|Proceedings of SPIE: Asia-Pacific Remote Sensing 2018 in Hawaii (ISSN 0277-786X) (e-ISSN 1996-756X); 10776
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and predicting the dynamic nature of the Arctic climate.
    Keywords: Meteorology and Climatology; Oceanography
    Type: GSFC-E-DAA-TN37464 , Atmospheric Chemistry and Physics; o 16; 20; 13173-13184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166GHz channels. It is the first study on global frozen particle microphysical properties that uses the dual-frequency microwave polarimetric signals. From the ice cloud scenes identified by the 183.3 3GHz channel brightness temperature (TB), we find that the scatterings of frozen particles are highly polarized with V-H polarimetric differences (PD) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166GHz TBs, as well as the PD at 640GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow region (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would result in as large as 30 error in ice water path retrievals. There is a universal bell-curve in the PD TB relationship, where the PD amplitude peaks at 10K for all three channels in the tropics and increases slightly with latitude. Moreover, the 166GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89GHz PD is less sensitive than 166GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors. Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, changes in the ice microphysical habitats or orientation due to turbulence mixing can also lead to a reduced PD in the deep convective cores. The current GMI polarimetric measurements themselves cannot fully disentangle the possible mechanisms.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN39217 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 17; 4; 2741-2757
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Clouds, ice clouds in particular, are a major source of uncertainty in climate models. Submm-wave sensors fill the sensitivity gap between MW and IR.Cloud microphysical properties (particle size and shape) account for large (200 and 40) measurement uncertainty.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47706 , Caltech/JPL Workshop; Sep 26, 2017; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-11-01
    Print ISSN: 0169-4332
    Electronic ISSN: 1873-5584
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...