ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: EpiGen model
    Description: Model code and example model output for the EpiGen model used in Walworth et al. 2020. The EpiGen model is an individual-based model of adaptation modified from Fisher’s model in which a simulated population moves between a “new” and “ancestral” environment following a step function with varying frequencies. This model calculates the rate of adaptation of the population where adaption proceeds through both fast variation, low transmission and slow variation, high transmission (HT) modifications. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/862458
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Keywords: Microbial adaptation ; Numerical model ; Selection dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Description: RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here.
    Keywords: Western boundary current systems ; Eastern boundary current systems ; Ocean observing systems ; Time series ; Autonomous underwater gliders ; Drifters ; Remote sensing ; Moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C11028, doi:10.1029/2010JC006251.
    Description: Repeat observations along the meridional Atlantic section A16 from Iceland to 56°S show substantial changes in the total dissolved inorganic carbon (DIC) concentrations in the ocean between occupations from 1989 through 2005. The changes correspond to the expected increase in DIC driven by the uptake of anthropogenic CO2 from the atmosphere, but the ΔDIC is more varied and larger, in some locations, than can be explained solely by this process. Concomitant large changes in oxygen (O2) suggest that processes acting on the natural carbon cycle also contribute to ΔDIC. Precise partial pressure of CO2 measurements suggest small but systematic increases in the bottom waters. To isolate the anthropogenic CO2 component (ΔCanthro) from ΔDIC, an extended multilinear regression approach is applied along isopycnal surfaces. This yields an average depth-integrated ΔCanthro of 0.53 ± 0.05 mol m−2 yr−1 with maximum values in the temperate zones of both hemispheres and a minimum in the tropical Atlantic. A higher decadal increase in the anthropogenic CO2 inventory is found for the South Atlantic compared to the North Atlantic. This anthropogenic CO2 accumulation pattern is opposite to that seen for the entire Anthropocene up to the 1990s. This change could perhaps be a consequence of the reduced downward transport of anthropogenic CO2 in the North Atlantic due to recent climate variability. Extrapolating the results for this section to the entire Atlantic basin (63°N to 56°S) yields an uptake of 5 ± 1 Pg C decade−1, which corresponds to about 25% of the annual global ocean uptake of anthropogenic CO2 during this period.
    Description: The CLIVAR/CO2 cruises are cosponsored by the physical and chemical oceanography divisions of the National Science Foundation and the Climate Observation Division of the Climate Program Office of NOAA. Support from the program managers involved is greatly appreciated. We also acknowledge a grant from NOAA (NOAA‐NA07OAR4310098), which supported part of the postcruise data analysis contributing to this manuscript. N.G. also acknowledges support from ETH Zurich.
    Keywords: Carbon cycling ; Biogeochemical cycles, processes, and modeling ; Oceans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Chemistry 13 (2016): 302-313, doi:10.1071/EN15045.
    Description: Oceanic biogeochemical cycling of dimethylsulfide (DMS), and its precursor dimethylsulfoniopropionate (DMSP), has gained considerable attention over the past three decades because of the potential role of DMS in climate mediation. Here we report 3 years of monthly vertical profiles of organic sulfur cycle concentrations (DMS, particulate DMSP (DMSPp) and dissolved DMSP (DMSPd)) and rates (DMSPd consumption, biological DMS consumption and DMS photolysis) from the Bermuda Atlantic Time-series Study (BATS) site taken between 2005 and 2008. Concentrations confirm the summer paradox with mixed layer DMS peaking ~90 days after peak DMSPp and ~50 days after peak DMSPp : Chl. A small decline in mixed layer DMS was observed relative to those measured during a previous study at BATS (1992–1994), potentially driven by long-term climate shifts at the site. On average, DMS cycling occurred on longer timescales than DMSPd (0.43 ± 0.35 v. 1.39 ± 0.76 day–1) with DMSPd consumption rates remaining elevated throughout the year despite significant seasonal variability in the bacterial DMSP degrader community. DMSPp was estimated to account for 4–5 % of mixed layer primary production and turned over at a significantly slower rate (~0.2 day–1). Photolysis drove DMS loss in the mixed layer during the summer, whereas biological consumption of DMS was the dominant loss process in the winter and at depth. These findings offer new insight into the underlying mechanisms driving DMS(P) cycling in the oligotrophic ocean, provide an extended dataset for future model evaluation and hypothesis testing and highlight the need for a reexamination of past modelling results and conclusions drawn from data collected with old methodologies.
    Description: The authors acknowledge funding from the National Science Foundation (NSF) (OCE-0425166) and the Center for Microbial Oceanography Research and Education (CMORE) a NSF Science and Technology Center (EF-0424599).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: Dataset: Gridded in-situ oxygen profiles
    Description: Gridded in-situ oxygen profiles from glider deployments in the San Pedro Channel, CA in 2013 and 2014. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/768685
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1260296, NSF Division of Ocean Sciences (NSF OCE) OCE-1260692
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Gridded in-situ profiles
    Description: This dataset includes chlorophyll a fluorescence and water temperature from gridded in-situ profiles from a slocum glider deployed between March and July in 2013 and 2014 in the San Pedro Channel, located in the Southern California Bight off the coast of Los Angeles. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/751128
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1260296, NSF Division of Ocean Sciences (NSF OCE) OCE-1260692
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-03
    Description: One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-03-02
    Description: Marine microbes form the base of ocean food webs and drive ocean biogeochemical cycling. Yet little is known about the ability of microbial populations to adapt as they are advected through changing conditions. Here, we investigated the interplay between physical and biological timescales using a model of adaptation and an eddy-resolving ocean circulation climate model. Two criteria were identified that relate the timing and nature of adaptation to the ratio of physical to biological timescales. Genetic adaptation was impeded in highly variable regimes by nongenetic modifications but was promoted in more stable environments. An evolutionary trade-off emerged where greater short-term nongenetic transgenerational effects (low-γ strategy) enabled rapid responses to environmental fluctuations but delayed genetic adaptation, while fewer short-term transgenerational effects (high-γ strategy) allowed faster genetic adaptation but inhibited short-term responses. Our results demonstrate that the selective pressures for organisms within a single water mass vary based on differences in generation timescales resulting in different evolutionary strategies being favored. Organisms that experience more variable environments should favor a low-γ strategy. Furthermore, faster cell division rates should be a key factor in genetic adaptation in a changing ocean. Understanding and quantifying the relationship between evolutionary and physical timescales is critical for robust predictions of future microbial dynamics.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-12-28
    Description: Amazon forests, which store ∼50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem’s resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest’s response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-11-20
    Description: Oceanic time-series have been instrumental in providing an understanding of biological, physical, and chemical dynamics in the oceans and how these processes change over time. However, the extrapolation of these results to larger oceanographic regions requires an understanding and characterization of local versus regional drivers of variability. Here we use high-frequency spatial and temporal glider data to quantify variability at the coastal San Pedro Ocean Time-series (SPOT) site in the San Pedro Channel (SPC) and provide insight into the underlying oceanographic dynamics for the site. The dataset was dominated by four water column profile types: active upwelling, offshore influence, subsurface chlorophyll maximum, and surface bloom. On average, waters across the SPC were most similar to offshore profiles. On weekly timescales, the SPOT station was on average representative of 64 % of profiles taken within the SPC, and SPOT was least similar to SPC locations that were closest to the Palos Verdes Peninsula. Subsurface chlorophyll maxima with co-located chlorophyll and particle maxima were common in 2013 and 2014 suggesting that these subsurface chlorophyll maxima might contribute significantly to the local primary production. These results indicate that high-resolution in situ glider deployments can be used to determine the spatial domain of time-series data, allowing for broader application of these datasets and greater integration into modeling efforts.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...