ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: A generalized form of the second-order van Leer transport scheme is derived. Several constraints to the implied subgrid linear distribution are discussed. A very simple positive-definite scheme can be derived directly from the generalized form. A monotonic version of the scheme is applied to the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) for the moisture transport calculations, replacing the original fourth-order center-differencing scheme. Comparisons with the original scheme are made in idealized tests as well as in a summer climate simulation using the full GLA GCM. A distinct advantage of the monotonic transport scheme is its ability to transport sharp gradients without producing spurious oscillations and unphysical negative mixing ratio. Within the context of low-resolution climate simulations, the aforementioned characteristics are demonstrated to be very beneficial in regions where cumulus convection is active. The model-produced precipitation pattern using the new transport scheme is more coherently organized both in time and in space, and correlates better with observations. The side effect of the filling algorithm used in conjunction with the original scheme is also discussed, in the context of idealized tests. The major weakness of the proposed transport scheme with a local monotonic constraint is its substantial implicit diffusion at low resolution. Alternative constraints are discussed to counter this problem.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 122; 7; p. 1575-1593
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Time average climatology and low-frequency variabilities of the global hydrologic cycle (GHC) in the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) were investigated in the present work. A 730-day experiment was conducted with the GLA GCM forced by insolation, sea surface temperature, and ice-snow undergoing climatological annual cycles. Ifluences of interactive soil moisture on time average climatology and natural variability of the GHC were also investigated by conducting 365-day experiments with and without interactive soil moisture. Insolation, sea surface temperature, and ice-snow were fixed at their July levels in the latter two experiments. Results show that the model's time average hydrologic cycle variables for July in all three experiments agree reasonably well with observations. Except in the case of precipitable water, the zonal average climates of the annual cycle experiment and the two perpetual July experiments are alike, i.e., their differences are within limits of the natural variability of the model's climate. Statistics of various components of the GHC, i.e., water vapor, evaporation, and precipitation, are significantly affected by the presence of interactive soil moisture. A long-term trend is found in the principal empirical modes of variability of ground wetness, evaporation, and sensible heat. Dominant modes of variability of these quantities over land are physically consistent with one another and with land surface energy balance requirements. The dominant mode of precipitation variability is found to be closely related to organized convection over the tropical western Pacific Ocean. The precipitation variability has timescales in the range of 2 to 3 months and can be identified with the stationary component of the Madden-Julian Oscillation. The precipitation mode is not sensitive to the presence of interactive soil moisture but is closely linked to both the rotational and divergent components of atmospheric moisture transport. The present results indicate that globally coherent natural variability of the GHC in the GLA GCM has two basic timescales in the absence of annual cycles of external forcings: a long-term trend associated with atmosphere-soil moisture interaction which affects the model atmosphere mostly over midlatitude continental regions and a large-scale 2- to 3-month variability associated with atmospheric moist processes over the western Pacific Ocean.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1329-1345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54 deg N and 54 deg S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W/sq m and more. The discrepancies are particularly large in the July case off the western coast of North America. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 6; 3; p. 560-567.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres General Circulation Model (GCM) that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations. The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm/d (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm/d (roughly 8%) that begins to emerge even in 1-2 day averages and exhibits complex evolution that extends downstream with the winds. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 3; p. 346-361
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: A new version of the Goddard Laboratory for Atmospheres GCM is utilized to simulate the influence of an observed sea surface temperature anomaly on rainfall and atmospheric circulation. The model can reproduce many essential features of the observed tropical rainfall and circulation anomalies during January-February 1983. Particularly, the model simulates realistic patterns of tropical anomalies of sea level pressure, 200 mb geopotential heights, and horizontal winds at the 200 and 850 mb levels. The model-simulated tropical precipitation anomaly patterns appear realistic, although the precipitation is rather excessive and the atmosphere is too energetic.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 4; 107-115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: The roles of the Critical Cloud Work Function (CCWF) data set and the upper and lower bounds on entrainment by cumulus plumes in the Arakawa-Schubert cumulus parameterization (ASCP) in the GLA GCM (Geller et al., 1988) were investigated in two sets of experiments. It was found that the horizontal and vertical distribution of cumulus heating can be altered in ASCP by adjusting these parameters. These changes can have a strong influence on the vertical structure of condensation heating, water vapor distribution, temperature, and rainfall. The CCWF is an important limiting parameter that controls the onset of different cloud types; increasing the threshold values of CCWF for all clouds tends to concentrate the rainfall into a narrower ITCZ and affects the rainfall during the initial adjustment period.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 48; 1573-158
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: The diagnostic framework being utilized by researchers at NASA-Goddard in a numerical analysis of the draught which occurred in the U.S. in 1980 described, along with preliminary results. Attention is focused on the wave structure at 500 mb and comparisons of this structure with NMC data from 1963-77 to define conditions during the initiation, maintenance and decay of a draught. Attempts are also being made to develop a simple index for the diagnosis of heat patterns using as input data from the 500 mb analysis. Early studies involving the examination of the effects of varying boundary conditions have revealed a positive contribution from the soil moisture fields and a negative contribution from the North Pacific sea surface temperature during the event. Studies are continuing to characterize phenomena during draught initiation and decay.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: The influence of surface albedo and evapotranspiration anomalies that could result from the hypothetical semiarid vegetation over North Africa on its July circulation and rainfall is examined using the Goddard Laboratory for Atmospheres GCM. It is shown that increased soil moisture and its dependent evapotranspiration produces a cooler and moister PBL over North Africa that is able to support enhanced moist convection and rainfall in Sahel and southern Sahara. It is found that lower surface albedo yields even higher moist static energy in the PBL and enhances the local moist convection and rainfall. Modifying the rain-evaporation parameterization in the model produces changes in the hydrological cycle and rainfall anomalies in distant regions. The effects of different falling rain parameterizations are discussed.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 116; 2388-240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-19
    Description: The Goddard Laboratory for Atmospheres GCM is used to study the sensitivity of the simulated July circulation to modifications in the parameterization of dry and moist convection, evaporation from falling raindrops, and cloud-radiation interaction. It is shown that the Arakawa-Schubert (1974) cumulus parameterization and a more realistic dry convective mixing calculation yielded a better intertropical convergence zone over North Africa than the previous convection scheme. It is found that the physical mechanism for the improvement was the upward mixing of PBL moisture by vigorous dry convective mixing. A modified rain-evaporation parameterization which accounts for raindrop size distribution, the atmospheric relative humidity, and a typical spatial rainfall intensity distribution for convective rain was developed and implemented. This scheme led to major improvements in the monthly mean vertical profiles of relative humidity and temperature, convective and large-scale cloudiness, rainfall distributions, and mean relative humidity in the PBL.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 116; 2366-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-19
    Description: The NASA Goddard Laboratory for Atmospheres fourth-order GCM was used in a series of medium-range numerical forecast experiments in order to improve understanding of the severe summer 1980 heat wave over the U.S. The results show that the derived soil moisture anomalies in the summer of 1980 contributed positively to the model's simulation of the heat wave maintenance, and suggest that once a region of reduced soil moisture is established, it tends to persist and maintain warmer and drier conditions. The lower soil moisture values resulted in reduced evaporation, higher ground temperatures, increased sensible heat flux from ground to air, higher surface air temperature, lower sea-level pressure, and higher 500-mb height. The effects of North Pacific sea-surface-temperature anomalies were mostly opposite to those of the soil-moisture anomalies: enhanced northerly flow of cooler drier air, increased evaporation, lower ground and air temperature, higher sea level pressure, and lower 500 mb heights over the Great Plains.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 115; 1345-135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...