ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (582)
Collection
Language
  • 1
    Publication Date: 2024-02-05
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Penetrating, high‐energy synchrotron X‐rays are in strong demand, particularly for high‐pressure research in physics, chemistry and geosciences, and for materials engineering research under less extreme conditions. A new high‐energy wiggler beamline P61 has been constructed to meet this need at PETRA III in Hamburg, Germany. The first part of the paper offers an overview of the beamline front‐end components and beam characteristics. The second part describes the performance of the instrumentation and the latest developments at the P61B endstation. Particular attention is given to the unprecedented high‐energy photon flux delivered by the ten wigglers of the PETRA III storage ring and the challenges faced in harnessing this amount of flux and heat load in the beam. Furthermore, the distinctiveness of the world's first six‐ram Hall‐type large‐volume press, Aster‐15, at a synchrotron facility is described for research with synchrotron X‐rays. Additionally, detection schemes, experimental strategies and preliminary data acquired using energy‐dispersive X‐ray diffraction and radiography techniques are presented.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The operation of the P61B endstation large‐volume press and optics of P61 are reviewed. The instrumentation at P61B, including the large‐volume press, detection systems and data acquisition for 〈italic〉in situ〈/italic〉 high‐pressure experiments are described.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2ju5040:jsy2ju5040-fig-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:550.724 ; extreme conditions ; high‐pressure ; large‐volume press ; energy‐dispersive X‐ray diffraction ; radiography ; resistive heating ; ultrasonic interferometry ; acoustic emissions detection
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-18
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-21
    Description: In real systems, the unpredictable jump changes of the random environment can induce the critical transitions (CTs) between two non-adjacent states, which are more catastrophic. Taking an asymmetric Lévy-noise-induced tri-stable model with desirable, sub-desirable, and undesirable states as a prototype class of real systems, a prediction of the noise-induced CTs from the desirable state directly to the undesirable one is carried out. We first calculate the region that the current state of the given model is absorbed into the undesirable state based on the escape probability, which is named as the absorbed region. Then, a new concept of the parameter dependent basin of the unsafe regime (PDBUR) under the asymmetric Lévy noise is introduced. It is an efficient tool for approximately quantifying the ranges of the parameters, where the noise-induced CTs from the desirable state directly to the undesirable one may occur. More importantly, it may provide theoretical guidance for us to adopt some measures to avert a noise-induced catastrophic CT.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-21
    Description: In stochastic complex systems, some sudden critical transitions (CTs) from one desirable state to another contrasting one can take place because of noise, which may even lead to catastrophic consequences. To keep a certain system in one desirable state of performance, methods that suppress these catastrophic CTs in the presence of noise need to be developed. In this paper, the ability of an external linear augmentation method to suppress Gaussian white noise-induced CTs away from a desirable state is investigated from a new perspective. This control is designed in such a way that, as a noise-induced CT is impending, the desirable state of performance in a stochastic complex system can be stabilized using a specific type of coupling with a linear dynamical system. Then, the contrasting state is annihilated with increasing coupling strength. Taking a bi-stable system with one CT (from the desirable state to the undesirable one) and a tri-stable system with two CTs (from the desirable state to the sub-desirable one and from the sub-desirable state to the undesirable one) as the prototype class of real complex systems, the potential of our technique is demonstrated.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-05
    Description: Nitrogen (N) fertilization is the major contributor to nitrous oxide (N2O) emissions from agricultural soil, especially in post‐harvest seasons. This study was carried out to investigate whether ryegrass serving as cover crop affects soil N2O emissions and denitrifier community size. A microcosm experiment was conducted with soil planted with perennial ryegrass (Lolium perenne L.) and bare soil, each with four levels of N fertilizer (0, 5, 10 and 20 g N m−2; applied as calcium ammonium nitrate). The closed‐chamber approach was used to measure soil N2O fluxes. Real‐time PCR was used to estimate the biomass of bacteria and fungi and the abundance of genes involved in denitrification in soil. The results showed that the presence of ryegrass decreased the nitrate content in soil. Cumulative N2O emissions of soil with grass were lower than in bare soil at 5 and 10 g N m−2. Fertilization levels did not affect the abundance of soil bacteria and fungi. Soil with grass showed greater abundances of bacteria and fungi, as well as microorganisms carrying narG, napA, nirK, nirS and nosZ clade I genes. It is concluded that ryegrass serving as a cover crop holds the potential to mitigate soil N2O emissions in soils with moderate or high NO3− concentrations. This highlights the importance of cover crops for the reduction of N2O emissions from soil, particularly following N fertilization. Future research should explore the full potential of ryegrass to reduce soil N2O emissions under field conditions as well as in different soils. Highlights This study was to investigate whether ryegrass serving as cover crop affects soil N2O emissions and denitrifier community size; Plant reduced soil N substrates on one side, but their root exudates stimulated denitrification on the other side; N2O emissions were lower in soil with grass than bare soil at medium fertilizer levels, and growing grass stimulated the proliferation of almost all the denitrifying bacteria except nosZ clade II; Ryegrass serving as a cover crop holds the potential to mitigate soil N2O emissions.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: The National Science Project for University of Anhui Province
    Keywords: 551.9 ; 631.4 ; denitrification ; perennial ryegrass (Lolium perenne L.) ; soil bacteria ; soil CO2 emissions ; soil N2O emissions
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-04
    Description: Past orbital parameters of the Moon are difficult to reconstruct from geological records because relevant data sets of tidal strata are scarce or incomplete. The sole Archean data point is from the Moodies Group (ca 3.22 Ga) of the Barberton Greenstone Belt, South Africa. From the time‐series analysis of tidal bundles from a well‐exposed subaqueous sand wave of this unit, Eriksson and Simpson (Geology, 28, 831) suggested that the Moon’s anomalistic month at 3.2 Ga was closer to 20 days than the present 27.5 days. This is in apparent accordance with models of orbital mechanics which place the Archean Moon in a closer orbit with a shorter period, resulting in stronger tidal action. Although this study’s detailed geological mapping and section measuring of the site confirmed that the sandstone bed in question is likely a migrating dune, the presence of angular mud clasts, channel‐margin slumps, laterally aggrading channel fills and bidirectional paleocurrents in overlying and underlying beds suggests that this bedform was likely located in a nearshore channel near lower‐intertidal flats and subtidal estuarine bars; it thus carries risk of incomplete preservation. Repeated measurements of foreset thicknesses along the published traverse, measured perpendicular to bedding, failed to show consistent spectral peaks. Larger data sets acquired along traverses measured parallel to bedding along the 20.5 m wide exposure are affected by minor faulting, uneven outcrop weathering, changing illumination, weather, observer bias and show a low reproducibility. The most robust measurements herein confirm the periodicity peak of approximately 14 in the original data of Eriksson and Simpson (Geology, 28, 831). Because laminae may have been eroded, the measurements may represent a lower bound of about 28 lunar days per synodic month. This estimate agrees well with Earth–Moon dynamic models which consider the conservation of angular momentum and place the Archaean Moon in a lower orbit around a faster‐spinning Earth.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.3 ; ddc:556
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-12
    Description: Transient magnetic reconnection plays an important role in energetic particle acceleration in planetary magnetospheres. Jupiter's magnetosphere provides a unique natural laboratory to study processes of energy transport and transformation. Strong electric fields in spatially confined structures such as plasmoids can be responsible for ion acceleration to high energies. In this study we focus on the effectiveness of ion energization and acceleration in plasmoids. Therefore, we present a statistical study of plasmoid structures in the predawn magnetotail, which were identified in the magnetometer data of the Juno spacecraft from 2016 to 2018. We additionally use the energetic particle observations from the Jupiter Energetic Particle Detector Instrument which discriminates between different ion species. We are particularly interested in the analysis of the acceleration and energization of oxygen, sulfur, helium, and hydrogen ions. We investigate how the event properties, such as the radial distance and the local time of the observed plasmoids in the magnetotail, affect the ion intensities close to the current sheet center. Furthermore, we analyze if ion acceleration is influenced by magnetic field turbulence inside the plasmoids. We find significant heavy ion acceleration in plasmoids close to the current sheet center which is in line with the previous statistical results based on Galileo observations conducted by Kronberg et al. (2019, https://doi.org/10.1029/2019JA026553). The observed effectiveness of the acceleration is dependent on the position of Juno in the magnetotail during the plasmoid event observation. Our results show no correlation between magnetic field turbulence and nonadiabatic acceleration for heavy ions during plasmoids.
    Description: Key Points: Intensity of heavy ions is strongly increased during plasmoids close to the current sheet center. Significant increase of heavy ion intensities is observed in plasmoids with larger wave power. Acceleration of heavy and light ions in plasmoids due to resonant interaction with the magnetic field fluctuations could not be observed.
    Description: Volkswagen Foundation (VolkswagenStiftung) http://dx.doi.org/10.13039/501100001663
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: NASA
    Description: https://pds-ppi.igpp.ucla.edu/
    Keywords: ddc:523 ; plasmoids ; Juno ; JEDI ; ion acceleration
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-20
    Description: Knowledge of lithospheric structure is essential for understanding the impact of continental collision and oceanic subduction on surface tectonic configurations. Full‐waveform tomographic images reveal lateral heterogeneities and anisotropy of the lithosphere and asthenosphere in Asia. Estimating lithospheric thickness from seismic velocity reductions at depth exhibits large variations underneath different tectonic units. The thickest cratonic roots are present beneath the Sichuan, Ordos, and Tarim basins and central India. Radial anisotropy signatures of 11 representative tectonic provinces uncover the different nature and geodynamic processes of their respective past and present deformation. The large‐scale continental lithospheric deformation is characterized by low‐velocity anomalies from the Himalayan Orogen to the Baikal rift zone in central Asia, coupled with the post‐collision thickening of the crust. The horizontal low‐velocity layer of ∼100–300 km depth extent below the lithosphere points toward the existence of the asthenosphere beneath East and Southeast Asia, with heterogeneous anisotropy indicative of channel flows.
    Description: Plain Language Summary: The lithospheric plates, like mosaics of the Earth’s surface, are moving coherently over the weaker, convecting asthenosphere. The lithospheric structure and thickness dictated by mantle dynamics play a first‐order role in understanding the active tectonics and morphological evolution of the Asian region. Here, the latest high‐resolution full‐waveform tomographic model, SinoScope 1.0, is employed to investigate the seismic structure and dynamics of the lithosphere and asthenosphere from a seismological perspective. The lithospheric thickness of known various geological units and cratonic blocks is retrieved with large variability. The observed anisotropic signatures within the lithosphere and asthenosphere provide important constraints on the deformation state and history of different tectonic provinces. The India‐Eurasia collision primarily induced large‐scale lithospheric deformation and thickening of the crust in the west of the North‐South Gravity Lineament. The narrow low‐velocity layer below the lithosphere lies beneath East and Southeast Asia and is bounded by subduction trenches and cratonic blocks, which provides seismic evidence for the low‐viscosity asthenosphere that partially decouples plates from mantle flow beneath and allows plate tectonics to work above. The lithospheric thinning and extension, intensive magmatism, and mineralization are potentially associated with the strong interaction between the lithosphere and asthenospheric flow in the eastern Asian margin.
    Description: Key Points: Full‐waveform tomographic images reveal lateral heterogeneities and anisotropy in the lithosphere and asthenosphere beneath the Asian region. India‐Eurasia collision induced large‐scale low‐velocity anomaly and crustal thickening spanning from the Himalayas to the Baikal rift zone. Asthenosphere in East and SE Asia exhibits strong vsh, 〉 vsv, and partially decouples lithosphere, bounded by subduction trench and cratonic keels.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Korea Meteorological Administration Research and Development Program http://dx.doi.org/10.13039/501100003629
    Description: National Research Foundation of Korea http://dx.doi.org/10.13039/501100003725
    Keywords: ddc:551.1 ; Asia ; seismic structure ; lithosphere dynamics ; asthenosphere dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-21
    Description: Oceanic circulation and mass‐field variability play important roles in exciting Earth's wobbles and length‐of‐day changes (ΔΛ), on time scales from days to several years. Modern descriptions of these effects employ oceanic angular momentum (OAM) series from numerical forward models or ocean state estimates, but nothing is known about how ocean reanalyses with sequential data assimilation (DA) would fare in that context. Here, we compute daily OAM series from three 1/4° global ocean reanalyses that are based on the same hydrodynamic core and input data (e.g., altimetry, Argo) but different DA schemes. Comparisons are carried out (a) among the reanalyses, (b) with an established ocean state estimate, and (c) with Earth rotation data, all focusing on the period 2006–2015. The reanalyses generally provide credible OAM estimates across a range of frequencies, although differences in amplitude spectra indicate a sensitivity to the adopted DA scheme. For periods less than 120 days, the reanalysis‐based OAM series explain ∼40%–50% and ∼30%–40% of the atmosphere‐corrected equatorial and axial geodetic excitation, similar to what is achieved with the state estimate. We find mixed performance of the reanalyses in seasonal excitation budgets, with some questionable mean ocean mass changes affecting the annual cycle in ΔΛ. Modeled excitations at interannual frequencies are more uncertain compared to OAM series from the state estimate and show hints of DA artifacts in one case. If users are to choose any of the tested reanalyses for rotation research, our study points to the Ocean Reanalysis System 5 as the most sensible choice.
    Description: Key Points: We evaluate three ocean reanalyses for their skill in explaining Earth rotation variations on different time scales from 2006 to 2015. For periods 〈120 days, reanalyses explain 40%–50% of atmosphere‐reduced polar motion excitation variance, similar to an ocean state estimate. Reanalyses show mixed skill in seasonal excitation budgets and, in one case, hints of data assimilation artifacts at interannual periods.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://resources.marine.copernicus.eu/product-detail/GLOBAL_REANALYSIS_PHY_001_031/INFORMATION
    Description: https://isdc.gfz-potsdam.de/ggfc-oceans/oam/
    Description: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316
    Description: https://podaac-tools.jpl.nasa.gov/drive/files/GeodeticsGravity/tellus/L3/mascon/RL06/JPL/v02/CRI/netcdf
    Description: https://keof.jpl.nasa.gov/combinations/
    Keywords: ddc:550 ; Earth rotation ; ocean angular momentum ; ocean reanalysis ; data assimilation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-07-19
    Description: Present estimates of the biogeochemical cycles of calcium, strontium, and potassium in the ocean reveal large imbalances between known input and output fluxes. Using pore fluid, incubation, and solid sediment data from North Pacific multi‐corer cores we show that, contrary to the common paradigm, the top centimeters of abyssal sediments can be an active site of authigenic precipitation of clay minerals. In this region, clay authigenesis is the dominant sink for potassium and strontium and consumes nearly all calcium released from benthic dissolution of calcium carbonates. These observations support the idea that clay authigenesis occurring over broad regions of the world ocean may be a major buffer for ocean chemistry on the time scale of the ocean overturning circulation, and key to the long‐term stability of Earth's climate.
    Description: Key Points: North Pacific red clay sediments are a sink for marine calcium, strontium, and potassium. Authigenic formation of clay minerals is prevalent in pelagic sediments throughout the North Pacific. The main mechanism for clay formation is recrystallization of aluminosilicates, neoformation can occur in biogenic silica rich sediments.
    Description: EC H2020 PRIORITY “Excellent science” H2020 European Research Council http://dx.doi.org/10.13039/100010663
    Description: Blavatnik Family Foundation http://dx.doi.org/10.13039/100011643
    Description: Isaac Newton Trust http://dx.doi.org/10.13039/501100004815
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.pangaea.de/10.1594/PANGAEA.946881
    Keywords: ddc:549 ; reverse weathering ; clay authigenesis ; calcium ; potassium ; porewater ; strontium
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...