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Abstract In real systems, the unpredictable jump changes of the random environment
can induce the critical transitions (CTs) between two non-adjacent states, which are more
catastrophic. Taking an asymmetric Lévy-noise-induced tri-stable model with desirable,
sub-desirable, and undesirable states as a prototype class of real systems, a prediction of
the noise-induced CTs from the desirable state directly to the undesirable one is carried
out. We first calculate the region that the current state of the given model is absorbed into
the undesirable state based on the escape probability, which is named as the absorbed
region. Then, a new concept of the parameter dependent basin of the unsafe regime
(PDBUR) under the asymmetric Lévy noise is introduced. It is an efficient tool for
approximately quantifying the ranges of the parameters, where the noise-induced CTs
from the desirable state directly to the undesirable one may occur. More importantly, it
may provide theoretical guidance for us to adopt some measures to avert a noise-induced
catastrophic CT.
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1 Introduction
Critical transition (CT) also called tipping, a phenomenon that a system shifts from one

state to another contrasting one, is ubiquitous in many health and climate systems[1–4]. This
sudden and often irreversible change may cause significant impacts on the local economy
or society. Therefore, predicting CTs can be crucial for preventing such drastic changes.
Using mathematical models of CTs, researchers have proposed various early warning signals to
imminent CTs, such as variance and autocorrelation, phase lag, and amplitude difference[5–8].
However, their generality and applicability to practical systems have limitations because these
models only contain one CT between two adjacent states.

In fact, many real systems may undergo multi-stable states with respect to gradually chang-
ing conditions. Typical examples include the endogenous molecular-cellular network[9], Earth’s
mass extinction[10], monsoon climate[11], and hypersonic boundary layer[12–13]. In these sys-
tems, CTs between non-adjacent states can occur due to large jumps in noisy environment,
which may cause more catastrophic effects. For example, human cells may undergo healthy,
sub-healthy, and cancer states[14]. When the cells of an organic tissue shift from a healthy state
to a sub-healthy one, they still have a rather long time for the whole organism being viable.
Now, the intervention of the treatment may recover the tissue to the healthy state. However,
a physically strong body sometimes gets cancer suddenly, and the best time for a treatment is
missed. This is actually a CT of cells from a healthy state directly to a cancer one. Hence, it
is vitally important to warn jump changes induced CTs between non-adjacent states.

Random fluctuations-induced CTs have been often considered under the usual assumption
of the Gaussian case, which describes small fluctuations in practice[15–17]. However, large jumps
are always associated with a complex structure of the environment, which could not be described
as the Gaussian noise. Therefore, a kind of the non-Gaussian noise needs to be considered to
model unpredictable jumps of random environment. Lévy flights, a stochastic process charac-
terized by the occurrence of extremely long jumps, can solve this problem[18–21]. The length
of these jumps is distributed as Lévy stable statistics, which exhibits heavy tails and makes
the moments divergent. So far, this kind of noise has been frequently encountered in nature,
such as asset prices[22–23], protein folding[24], random search[25–26], Lagrangian drifts in certain
oceanic fluid flows[27], and climate[28]. Compared with the Gaussian noise, the Lévy noise can
induce a more catastrophic CT even between non-adjacent states. How to predict this type of
CT, and then take measures to avert it is a problem we need to explore.

In Ref. [3], we have introduced the concept of parameter dependent basin of the unsafe
regime (PDBUR) via the relationship between a Gaussian white noise-induced CT and the
corresponding particle escaping. Using the same idea, in this paper, the PDBUR corresponding
to Lévy-noise-induced CTs will be established. Then, the ranges of the parameters where
Lévy-noise-induced CTs from the desirable state directly to the undesirable state may occur
are quantified via this new concept.

Taking an asymmetric Lévy-noise-induced tri-stable model with desirable, sub-desirable,
and undesirable states as a case study, the CT that may directly shift to the undesirable state
and the corresponding escape problem of particles are first analyzed. Secondly, the different
forms of the escape probability corresponding to different dynamic transitions are obtained.
Then, the set that the current state of the given model is absorbed into the undesirable state
is calculated, which is named as the absorbed region. Furthermore, the new concept of the
PDBUR under asymmetric Lévy noise is introduced. Finally, some conclusions are presented
to close this paper.
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2 Model description

CTs between two non-adjacent states are widespread in various real-world systems. For
example, a body may shift from a healthy state to a cancer state directly. Then, it is difficult
to return to the healthy state even the sub-healthy state because the best time for a treatment
is missing. To warn these catastrophic CTs between non-adjacent states, a self-constructed
Lévy-noise-induced tri-stable model with desirable, sub-desirable, and undesirable states is
considered. The form is

dx

dt
= f (x, ε) +

dLt

dt
, (1)

where f (x, ε) = −1.14x5 − 0.4x4 +4.6x3 + 0.5x2 − 3.8x− ε, ε is a control parameter, and these
special coefficient values for f(x, ε) are chosen to construct a basic model that roughly fits real
systems[29]. Lt is a Lévy process with the generating triplet (0, d, σvα,β), its time derivative is
the Lévy noise, vα,β is an asymmetric Lévy jump measure, and

vα,β (dy) =
C1I{0<y<∞} (y) + C2I{−∞<y<0} (y)

|y|1+α (dy)

with

C1 = Cα
1 + β

2
, C2 = Cα

1 − β

2
, Cα =

α (1 − α)
Γ (2 − α) cos

(
πα
2

) ,
where Γ(2 − α) =

∫ +∞
0

t(2−α)−1e−tdt, I{.} denotes the indicator function, α is the stability
index, and β is the skewness parameter[30]. We consider α ∈ (1, 2) and β ∈ [−1, 0] throughout
the paper.

In the absence of Lt, the system (1) can be reduced to the corresponding deterministic
system, and the geometric structure of it versus ε is shown in Fig. 1. We find that there are five
different regimes which have the following characteristics. The stable branches where xS1, xS2,
and xS3 are located represent the desirable state, the sub-desirable state, and the undesirable
state, respectively. Moreover, the unstable branches where xU1 and xU2 are located mark the
height of the potential barrier between two adjacent stable branches. The coordinate values of
Fold 1, Fold 2, Fold 3, and Fold 4 are εFold 1 = 0.65, xE-Fold 1 = 1.343, εFold 2 =−1.26, xE-Fold 2

=0.537, εFold 3 = 1.50, xE-Fold 3 =−0.586, and εFold 4 =−2.15, xE-Fold 4 = −1.576, respectively.
Consider the large jumps in the Lévy noise, and three possible cases that the system (1)

shifts directly to the undesirable state are also given in Fig. 1. They are CTs from the desirable

−

−

-

− − −

Fig. 1 The geometric structure of the deterministic system with respect to changing ε, where CT 1,
CT 2, and CT 3 are three possible cases that the system (1) shifts directly to the undesirable
state under the Lévy noise (color online)
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state to the undesirable state in ε ∈ [εFold 4, εFold 2) and ε ∈ [εFold 2, εFold 1], and CT from the
sub-desirable state to the undesirable state in ε ∈ (εFold 1, εFold 3]. We record these three cases
as CT 1, CT 2, and CT 3, respectively. Although both CT 1 and CT 2 shift from the desirable
state to the undesirable state, the two states are adjacent for CT 1 and non-adjacent for CT 2.
Similar to CT 1, the sub-desirable state and the undesirable state are also adjacent for CT 3.

From the perspective of noise-induced dynamic transitions, CT 1, CT 2, and CT 3 can
correspond to three escape problems of particles, as follows:

Case 1 ε ∈ [εFold 4, εFold 2)

Case 2 ε ∈ [εFold 2, εFold 1]

Case 3 ε ∈ (εFold 1, εFold 3]

Case 1 and Case 3 corresponding to CT 1 and CT 3 have the similar escape problems between
two adjacent intervals, while Case 2 corresponding to CT 2 is the escape problem of particles
between two non-adjacent intervals. Although x ∈ [xU1, xS1] has left the current interval, the
escape fails for CT 2 if x eventually falls in [xU2, xU1].

In fact, a CT occurs when the current stable state is absorbed into another state. For
example, Lévy-noise-induced CT 1 occurs because almost all x ∈ [xU2, xS1] are absorbed into
the undesirable state [xS3, xU2]. For a fixed ε ∈ [εFold 4, εFold 2), the possibility that a Lévy-
noise-induced CT occurs can be estimated via measuring the part of [xU2, xS1] that escapes to
[xS3, xU2]. Similarly, for a fixed ε ∈ [εFold 2, εFold 1] or ε ∈ (εFold 1, εFold 3], the part of [xU1, xS1]
or [xU2, xS2] that is absorbed into [xS3, xU2] should be quantified. Here, we quantify the
absorbed region of the current interval via analyzing the escape probability, and the different
forms of the escape probability corresponding to Cases 1, 2, and 3 will be obtained below.

3 Escape probability

For any u(x) ∈ H2
0 (R), the generator of the stochastic process x of the system (1) is

L2u (x) =
d

2
u′′ (x) + f (x, ε)u′ (x)

+ σ

∫
R\{0}

(
u (x + y) − u (x) − I{|y|<1} (y) yu′ (x)

)
vα,β (dy) , (2)

where d is the intensity of Gaussian noise, and σ is the intensity of Lévy noise. u′(x) and u′′(x)
represent the first and second derivatives of u(x) versus x, respectively. Note that y belongs to
the symmetry interval (−1, 1) in the de-singularizing term I|y|<1(y)yu′(x). However, the range
of y is generally an asymmetric interval (a, b).
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Suppose that x belongs to a general interval (a, b). Then, δ in I|y|<1(y)yu′(x) is no longer
equal to 1. From the following derivation process, we find δ = (b−a)/2. Hence, we first replace
I{|y|<1}(y) in Eq. (2) to I{|y|<(b−a)/2}(y) and get

d

2
u′′ (x) + c (x)u′ (x) + σ

∫
R\{0}

(
u (x + y) − u (x) − I{|y|< b−a

2 } (y) yu′ (x)
)
vα,β (dy) = 0, (3)

where

c (x) = f (x, ε) + σ (C1 − C2)

(
b−a
2

)1−α − 1
1 − α

.

Next, the different forms of the escape probability corresponding to Cases 1, 2, and 3 will be
derived based on Eq. (3).
3.1 Case 1 or Case 3

The asymmetric Lévy-noise-induced CT 1 and CT 3 have the same form of the escape
problem as follows:

Here, (a, b) = (xU2, xS1) for CT 1 and (a, b) = (xU2, xS2) for CT 3. If u(x) is regarded as the
escape probability, then u(x) = 0 for x ∈ [b,∞) and u(x) = 1 for x ∈ (−∞, a]. To keep the
computational domain fixed as (−1, 1), we perform a scalar conversion,

x =
b − a

2
z +

b + a

2
,

where z ∈ (−1, 1).
Defining

v (z) = u
(b − a

2
z +

b + a

2

)
,

we get

du

dx
=

2
b − a

dv

dz
,

d2u

dx2
=

4
(b − a)2

d2v

dz2
.

Let ŷ = 2
b−ay. Then, the integral term in Eq. (3) can be rewritten as

( 2
b − a

)α
∫
R\{0}

(
v (z + ŷ) − v (z) − I{|by|<1}ŷv′ (z)

) C1I{0<by<∞} (ŷ) + C2I{−∞<by<0} (ŷ)

|ŷ|1+α (dŷ),

where v′(z) is the first derivative of v(z) versus z.
Therefore, the equivalent form of Eq. (3) is

σ
( 2

b − a

)α
∫
R\{0}

(
v (z + ŷ) − v (z) − I{|by|<1}ŷv′ (z)

) C1I{0<by<∞} (ŷ) + C2I{−∞<by<0} (ŷ)

|ŷ|1+α (dŷ)

+
4

(b − a)2
d

2
v′′ (z) +

2
b − a

c
(b − a

2
z +

b + a

2

)
v′ (z) = 0, (4)

where v′′(z) is the second derivative of v(z) versus z.
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Due to v(z) = 0 for z ∈ [1,∞) and v(z) = 1 for z ∈ (−∞,−1], we can further infer that
v(z + ŷ) = 0 when ŷ � 1 − z, and v(z + ŷ) = 1 when ŷ � −1 − z.

Suppose that the integral in Eq. (4) is denoted by I0,

I0 =
∫
R\{0}

(
v (z + ŷ) − v (z) − I{|by|<1}ŷv′ (z)

) C1I{0<by<∞} (ŷ) + C2I{−∞<by<0} (ŷ)

|ŷ|1+α (dŷ).

We decompose I0 = C1I1 + C2I2, where

I1 =
∫
R+

v (z + ŷ) − v (z) − I{|by|<1}ŷv′ (z)
ŷ1+α

(dŷ),

I2 =
∫
R−

v (z + ŷ) − v (z) − I{|by|<1}ŷv′ (z)

|ŷ|1+α (dŷ).

I1 can be rewritten as

I1=
∫ 1

0

v (z + ŷ)−v (z)−ŷv′ (z)
ŷ1+α

(dŷ)+
∫ ∞

1

v (z + ŷ)−v (z)
ŷ1+α

(dŷ).

For z > 0, we have

I1 =
∫ 1−z

0

v (z + ŷ)−v (z)−ŷv′ (z)
ŷ1+α

(dŷ)+
v (z)
α

(1 − (1 − z)−α)−v′ (z)
1 − (1 − z)1−α

1 − α
− v (z)

α

= −v (z)
α

(1 − z)−α − v′ (z)
1 − (1 − z)1−α

1 − α
+
∫ 1−z

0

v (z + ŷ) − v (z) − ŷv′ (z)
ŷ1+α

(dŷ).

For z < 0, we get

I1= − v (z)
α

(1 − z)−α +
∫ 1−z

1

v (z + ŷ) − v (z)
ŷ1+α

(dŷ)+
∫ 1

0

v (z + ŷ) − v (z) − ŷv′ (z)
ŷ1+α

(dŷ).

I2 can be rewritten as

I2 =
∫ 0

−1

v (z + ŷ) − v (z) − ŷv′ (z)
|ŷ|1+α (dŷ) +

∫ −1

−∞

v (z + ŷ) − v (z)
|ŷ|1+α (dŷ).

For z > 0, we have

I2 =
1 − v (z)

α
(1 + z)−α +

∫ −1

−1−z

v (z + ŷ) − v (z)
(−ŷ)1+α (dŷ) +

∫ 0

−1

v (z + ŷ) − v (z) − ŷv′ (z)
(−ŷ)1+α (dŷ).

For z < 0, we get

I2 =
v (z) − 1

α
(1 − (1 + z)−α) + v′ (z)

1 − (1 + z)1−α

1 − α

+
∫ 0

−1−z

v (z + ŷ) − v (z) − ŷv′ (z)
(−ŷ)1+α (dŷ) +

1 − v (z)
α

=
1 − v (z)

α
(1 + z)−α + v′ (z)

1 − (1 + z)1−α

1 − α
+
∫ 0

−1−z

v (z + ŷ) − v (z) − ŷv′ (z)
(−ŷ)1+α (dŷ).
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Combining the above results of I1 and I2, we rewrite Eq. (4) as

σ
( 2

b − a

)α
(

C1

∫ 1−z

0

v (z + ŷ) − v (z) − ŷv′ (z)
ŷ1+α

(dŷ) + C2

(∫ −1

−1−z

v (z + ŷ) − v (z)

(−ŷ)1+α (dŷ)

+
∫ 0

−1

v (z + ŷ) − v (z) − ŷv′ (z)
(−ŷ)1+α (dŷ)

))
+
(

2
b − a

(
f
(b − a

2
z +

b + a

2
, ε
)

+ σ (C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)
− σ

( 2
b − a

)α

C1
1 − (1 − z)1−α

1 − α

)
v′ (z)

− σ
( 2

b − a

)α v (z)
α

(
C1 (1 − z)−α + C2 (1 + z)−α)+

4

(b − a)2
d

2
v′′ (z)

= − σC2

α

( 2
b − a

)α 1
(1 + z)α for z � 0, (5)

while

σ
( 2

b − a

)α
(

C1

(∫ 1

0

v (z + ŷ) − v (z) − ŷv′ (z)
ŷ1+α

(dŷ) +
∫ 1−z

1

v (z + ŷ) − v (z)
ŷ1+α

(dŷ)
)

+ C2

∫ 0

−1−z

v (z + ŷ) − v (z) − ŷv′ (z)
(−ŷ)1+α (dŷ)

)
+
( 2

b − a

(
f
(b − a

2
z +

b + a

2
, ε
)

+ σ (C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)
+ σ

( 2
b − a

)α

C2
1 − (1 + z)1−α

1 − α

)
v′ (z)

− σ
( 2

b − a

)α v (z)
α

(
C1 (1 − z)−α + C2 (1 + z)−α)+

4
(b − a)2

d

2
v′′ (z)

= − σC2

α

( 2
b − a

)α 1
(1 + z)α for z < 0. (6)

Next, Eqs. (5) and (6) are discretized. We divide the computational domain [−1, 1] into
2J subintervals, i.e., zj = jh, −J � j � J with each subinterval having the size h = 1/J .
Denote the numerical solution by the vector V = V−J:J , where the component Vj approximates
vj ≡ v(zj) for −J � j � J . Then, the discretizations corresponding to Eqs. (5) and (6) are

σ
( 2

b − a

)α
(

C1h

J−j∑
k=1

′Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α + C2h

( −1∑
k=−J

′′Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α

+
−J∑

k=−J−j

Vj+k − Vj

|zk|1+α

))
+
( 2

b − a

(
f
(b − a

2
zj +

b + a

2
, ε
)

+ σ(C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)

− σ
( 2

b − a

)α

C1
1 − (1 − zj)1−α

1 − α

)Vj+1 − Vj−1

2h
− σ

( 2
b − a

)α Vj

α
(C1(1 − zj)−α + C2 (1 + zj)

−α)

+
4

(b − a)2
d

2
Vj+1 − 2Vj + Vj−1

h2
= −σC2

α

( 2
b − a

)α 1
(1 + zj)

α for 0 � j � J − 1, (7)
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while

σ
( 2

b − a

)α
(

C1h

( J∑
k=1

′Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α +
J−j∑
k=J

Vj+k − Vj

|zk|1+α

)

+ C2h

−1∑
k=−J−j

′′ Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α

)
+
( 2

b − a

(
f
(b − a

2
zj +

b + a

2
, ε
)

+ σ (C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)
+σ
( 2

b − a

)α

C2
1 − (1 + zj)1−α

1 − α

)Vj+1 − Vj−1

2h

−σ
( 2

b − a

)α Vj

α
(C1(1 − zj)−α + C2(1 + zj)−α) +

4
(b − a)2

d

2
Vj+1 − 2Vj + Vj−1

h2

= − σC2

α

( 2
b − a

)α 1
(1 + zj)α

for − J + 1 � j � −1, (8)

where the summation symbol
∑

means that the terms of both end indices are multiplied by
1/2,

∑′′ means that only the term of the bottom index is multiplied by 1/2, and
∑′ means

that only the term of the upper index is multiplied by 1/2.
The truncation errors of the central difference schemes for the derivatives in Eqs. (7) and (8)

are of the second-order O(h2). From the error analysis of Refs. [31] and [32], the leading-order
error of the quadrature rule is

−σ
( 2

b − a

)α

(C1 + C2) ζ (α − 1)
v′′ (z)

2
h2−α = −σ

( 2
b − a

)α

Cαζ (α − 1)
v′′ (z)

2
h2−α,

where ζ is the Riemann zeta function. Then, Eqs. (7) and (8) can be further written as

σ

(
2

b − a

)α(
C1h

J−j∑
k=1

′Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α

+ C2h

( −1∑
k=−J

′′Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α +
−J∑

k=−J−j

Vj+k − Vj

|zk|1+α

))

+
( 2

b − a

(
f
(b − a

2
zj +

b + a

2
, ε
)

+ σ (C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)
− σ

( 2
b − a

)α

C1
1 − (1 − zj)

1−α

1 − α

)Vj+1 − Vj−1

2h
+
( 4

(b − a)2
d

2
− σ

( 2
b − a

)α

· Cαζ(α − 1)
1
2
h2−α

)Vj+1 − 2Vj + Vj−1

h2
− σ

( 2
b − a

)α Vj

α
(C1(1 − zj)−α

+ C2(1 + zj)−α) = −σC2

α

( 2
b − a

)α 1
(1 + zj)α

for 0 � j � J − 1, (9)

while

σ
( 2

b − a

)α
(

C1h

( J∑
k=1

′Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α +
J−j∑
k=J

Vj+k − Vj

|zk|1+α

)

+ C2h

−1∑
k=−J−j

′′ Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α

)
+
( 2

b − a

(
f
(b − a

2
zj +

b + a

2
, ε
)
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+ σ(C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)
+ σ

( 2
b − a

)α

C2
1 − (1 + zj)1−α

1 − α

)Vj+1 − Vj−1

2h

+
( 4

(b − a)2
d

2
− σ

( 2
b − a

)α

Cαζ(α − 1)
1
2
h2−α

)Vj+1 − 2Vj + Vj−1

h2
− σ

( 2
b − a

)α

· Vj

α
(C1(1−zj)−α+C2(1 + zj)−α)=−σC2

α

( 2
b − a

)α 1
(1 + zj)α

for − J+1 � j �−1. (10)

By taking (a, b) as (xU2, xS1) under a fixed ε ∈ [εFold 4, εFold 2), V−J = 1 and VJ = 0, the
escape probability V � P1(x) corresponding to CT 1 can be obtained via Eqs. (9) and (10).
Similarly, the escape probability V � P3(x) corresponding to CT 3 can be obtained when (a, b)
is taken as (xU2, xS2) under a fixed ε ∈ [εFold 1, εFold 3).
3.2 Case 2

For the asymmetric L�vy-noise-induced CT2, there is an interval [xU2, xU1] between the
two non-adjacent intervals (xU1, xS1) and [xS3, xU2]. Let (xU1, xS1) be (a, b) and [xS3, xU2] be
(ĉ, d̂). Then, ĉ < d̂ < a < b, and the corresponding dynamic transition is as follows:

We have transformed x ∈ (a, b) to z ∈ (−1, 1) via x = b−a
2 z + b+a

2 above[33]. Based on
this scalar conversion, the value corresponding to (ĉ, d̂) on the z-axis can be obtained, leading
to
(

2bc−b−a
b−a , 2bd−b−a

b−a ) � (c, d). Because v(z) = 0 for z ∈ [1,∞) ∪ (d,−1) and v(z) = 1 for
z ∈ (−∞, d], we can further infer that v(z + ŷ) = 0 when ŷ � 1 − z or d − z < ŷ < −1 − z and
v(z + ŷ) = 1 when ŷ � d − z.

Similar to CT 1 and CT 3, the integral in Eq. (4) is denoted by I0,

I0 =
∫
R\{0}

(
v (z + ŷ) − v (z) − I{|by|<1}ŷv′ (z)

) C1I{0<by<∞} (ŷ) + C2I{−∞<by<0} (ŷ)

|ŷ|1+α (dŷ).

We decompose I0 = C1I1 + C2I2, where

I1 =
∫
R+

v (z + ŷ) − v (z) − I{|by|<1}ŷv′ (z)
ŷ1+α

(dŷ),

I2 =
∫
R−

v (z + ŷ) − v (z) − I{|by|<1}ŷv′ (z)

|ŷ|1+α (dŷ).

Since I1 here is the same as I1 of Case 1 or Case 3, we only need to analyze I2,

I2 =
∫ 0

−1

v (z + ŷ) − v (z) − ŷv′ (z)
|ŷ|1+α (dŷ) +

∫ −1

−∞

v (z + ŷ) − v (z)
|ŷ|1+α (dŷ).

For z > 0, we get

I2 =
1
α

(
z − d

)−α − v (z)
α

(1 + z)−α +
∫ −1

−1−z

v (z + ŷ) − v (z)
(−ŷ)1+α (dŷ)

+
∫ 0

−1

v (z + ŷ) − v (z) − ŷv′ (z)
(−ŷ)1+α (dŷ).
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For z < 0, we have

I2 =
v (z)

α
(1 − (1 + z)−α) + v′ (z)

1 − (1 + z)1−α

1 − α

+
∫ 0

−1−z

v (z + ŷ) − v (z) − ŷv′ (z)

(−ŷ)1+α (dŷ) +
1
α

(
z − d

)−α − v (z)
α

= − v (z)
α

(1 + z)−α + v′ (z)
1 − (1 + z)1−α

1 − α
+

1
α

(
z − d

)−α

+
∫ 0

−1−z

v (z + ŷ) − v (z) − ŷv′ (z)
(−ŷ)1+α (dŷ).

Combining the above results of I1 and I2, we rewrite Eq. (4) as

σ
( 2

b − a

)α
(

C1

∫ 1−z

0

v (z + ŷ) − v (z) − ŷv′ (z)
ŷ1+α

(dŷ)

+C2

(∫ −1

−1−z

v (z + ŷ) − v (z)

(−ŷ)1+α (dŷ) +
∫ 0

−1

v (z + ŷ) − v (z) − ŷv′ (z)

(−ŷ)1+α (dŷ)

))

+
( 2

b − a

(
f
(b − a

2
z +

b + a

2
, ε
)

+ σ(C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)
− σ

( 2
b − a

)α

C1
1 − (1 − z)1−α

1 − α

)
v′(z)

− σ
( 2

b − a

)α v(z)
α

(C1(1 − z)−α + C2(1 + z)−α) +
4

(b − a)2
d

2
v′′(z)

= − σC2

α

( 2
b − a

)α

(z − d)−α for z � 0, (11)

while

σ
( 2

b − a

)α
(

C1

(∫ 1

0

v (z + ŷ) − v (z) − ŷv′ (z)
ŷ1+α

(dŷ) +
∫ 1−z

1

v (z + ŷ) − v (z)
ŷ1+α

(dŷ)
)

+ C2

∫ 0

−1−z

v (z + ŷ) − v (z) − ŷv′ (z)

(−ŷ)1+α (dŷ)
)

+
( 2

b − a

(
f
(b − a

2
z +

b + a

2
, ε
)

+ σ (C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)
+ σ

( 2
b − a

)α

C2
1 − (1 + z)1−α

1 − α

)
v′(z)

− σ
( 2

b − a

)α v (z)
α

(C1 (1 − z)−α + C2 (1 + z)−α) +
4

(b − a)2
d

2
v′′ (z)

= − σC2

α

( 2
b − a

)α

(z − d)−α for z < 0. (12)

Using the same discretization method in Case 1 or Case 3, the discretizations corresponding
to Eqs. (11) and (12) are

σ
( 2

b − a

)α
(

C1h

J−j∑
k=1

′Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α + C2h

( −1∑
k=−J

′′Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α

+
−J∑

k=−J−j

Vj+k − Vj

|zk|1+α

))
+
( 2

b − a

(
f
(b − a

2
zj +

b + a

2
, ε
)

+ σ(C1 − C2)

(
b−a
2

)1−α − 1
1 − α

)
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− σ
( 2

b − a

)α

C1
1 − (1 − zj)1−α

1 − α

)Vj+1 − Vj−1

2h
+
( 4

(b − a)2
d

2
− σ

( 2
b − a

)α

Cαζ(α − 1)

· 1
2
h2−α

)Vj+1 − 2Vj + Vj−1

h2
− σ

( 2
b − a

)α Vj

α
(C1(1 − zj)−α + C2(1 + zj)−α)

= − σC2

α

( 2
b − a

)α(
z − 2d − b − a

b − a

)−α

for 0 � j � J − 1, (13)

while

σ
( 2

b − a

)α
(

C1h

( J∑
k=1

′ Vj+k − Vj − zk
Vj+1−Vj−1

2h

|zk|1+α +
J−j∑
k=J

Vj+k − Vj

|zk|1+α

)
+ C2h

−1∑
k=−J−j

′′

· Vj+k−Vj−zk
Vj+1−Vj−1

2h

|zk|1+α

)
+
( 2

b − a

(
f
(b − a

2
zj+

b + a

2
, ε
)
+σ(C1−C2)

(
b−a
2

)1−α − 1
1−α

)
+σ
( 2

b−a

)α

C2
1 − (1 + zj)1−α

1−α

)Vj+1−Vj−1

2h
+
( 4

(b−a)2
d

2
−σ
( 2

b−a

)α

Cαζ(α − 1)
1
2
h2−α

)
· Vj+1 − 2Vj + Vj−1

h2
− σ

( 2
b − a

)α Vj

α
(C1(1 − zj)−α + C2(1 + zj)−α)

= − σC2

α

( 2
b − a

)α(
z − 2d − b − a

b − a

)−α

for − J + 1 � j � −1. (14)

For a fixed ε ∈ [εFold 2, εFold1], we take (a, b) = (xU1, xS1), (c, d) = [xS3, xU2], V−J = VxU1

and VJ = 0, and the escape probability V � P2(x) corresponding to CT 2 can be obtained via
Eqs. (13) and (14). The specific method for choosing VxU1 will be introduced below.

4 Absorbed region

Based on Eqs. (9) and (10), P1(x) of ∀x ∈ [xU2, xS1] or P3(x) of ∀x ∈ [xU2, xS2] can be
obtained. Furthermore, P2(x) of ∀x ∈ [xU1, xS1] follows from Eqs. (13) and (14). However, it
is impossible to determine how large the value of Pi(x) (i = 1, 2, 3) is, and the corresponding
x is considered to be absorbed into the undesirable state [xS3, xU2]. To quantify the part of
[xU2, xS1], [xU1, xS1] or [xU2, xS2] that may be absorbed into [xS3, xU2], the key is to give a
threshold value of the corresponding Pi(x). Similar to the method in Ref. [3], the absorbed
regions corresponding to CT 1, CT 2, and CT 3 are also defined here via the relationship
between the tangent slope of Pi(x) and the slope of a given line in the xPi(x)-plane. It should
be noted that, in the following, α = 1.5, β = −1, σ = 0.8, and d = 0.1 are taken as a set of
basic parameter values.
4.1 Absorbed region within [xU2, xS1] under a fixed ε ∈ [εFold4, εFold2)

For CT 1, the given line in the xP1(x)-plane is

y1 (x) =
1

xU2 − xS1
x +

xS1

xS1 − xU2
,

and it is a line connecting (xU2, 1) and (xS1, 0). Then, an approximate definition of the absorbed
region within [xU2, xS1] is given as follows.

Definition 1 For ε ∈ [εFold 4, εFold 2), suppose that a tagged partition of [xU2, xS1] is a
finite sequence xU2 = x0 < x1 < · · · < xL−1 < xL = xS1. The set [xU2, xL−j] , xU2 < xL−j �
xS1, j = 0, 1, · · · , L − 1 satisfying

P1 (xL−j−1) − P1 (xL−j)
xL−j−1 − xL−j

� 1
2 (xU2 − xS1)

is defined as the absorbed region D1 of [xU2, xS1] under the Lévy noise.
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Based on Definition 1, P1(x) and D1 for ε = −2.15 ∈ [εFold 4, εFold 2) and different noise
parameters are shown in Fig. 2. In addition, the ranges of D1 corresponding to different α,
β, d, and σ are presented in Table 1, respectively. It is found that D1 within [xU2, xS1] =
[−1.552, 1.711] increases with decreasing α. When α = 1.01, even the whole [xU1, xS1] becomes
D1 as shown in Fig. 2(a). This is because a smaller α can generate larger jumps which are
advantageous for x ∈ [xU2, xS1] to escape. Furthermore, as shown in Figs. 2(b)–2(d), the range
of D1 also increases with decreasing β or increasing d and σ, which is due to the change of these
parameters that can increase the amplitude of the jumps in the Lévy noise.

−

α
α
α

−

− −

β
β −
β −

σ 
σ 
σ 

Fig. 2 P1(x) and the corresponding D1 (bar-type) for ε = −2.15 and different parameters of the
Lévy noise: (a) β = −1, σ = 0.8, d = 0.1; (b) α = 1.5, σ = 0.8, d = 0.1; (c) α = 1.5, β = −1,
σ = 0.8; (d) α = 1.5, β = −1, d = 0.1 (color online)

Table 1 The ranges of D1 under different α, β, d, and σ

ε
α β

1.01 1.5 1.99 −1 −0.5 0

−2.15 [−1.552, 1.711] [−1.552,−0.629] [−1.552,−0.570] [−1.552,−0.629] [−1.552,−0.691] [−1.552,−0.753]

ε
d σ

0.1 0.4 0.7 0.2 0.5 0.8

−2.15 [−1.552,−0.629] [−1.552,−0.549] [−1.552,−0.469] [−1.552,−1.001] [−1.552,−0.792] [−1.552,−0.629]

4.2 Absorbed region within [xU1, xS1] under a fixed ε ∈ [εFold2, εFold1]
For CT 2, the given line in the xP2(x)-plane is a line connecting (xU1, y2(xU1)) and (xS1, 0),

where

y2 (x) =
1

xU2 − xS1
x +

xS1

xS1 − xU2
,
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and y2(xU1) = xU1−xS1
xU2−xS1

is the value when x = xU1, as shown in Fig. 3.

Fig. 3 The given line in the xP2(x)-plane (thick line), where y2(x) = 1
xU2−xS1

x + xS1
xS1−xU2

is a line

connecting (xU2, 1) and (xS1, 0), and the horizontal dotted line is the value of y2(x) with
x = xU1 (color online)

Obviously, the given line is a part of y2(x), and they have the same slope 1/(xU2 − xS1). It
should be noted that y2(xU1) is the boundary condition V−J of P2(x), namely, V−J = VxU1 =
y2(xU1). Therefore, an approximate definition of the absorbed region within [xU1, xS1] is given
as follows.

Definition 2 For ε ∈ [εFold 2, εFold 1], suppose that a tagged partition of [xU1, xS1] is a
finite sequence xU1 = x0 < x1 < · · · < xN−1 < xN = xS1. The set [xU1, xN−l] , xU1 < xN−l �
xS1, l = 0, 1, · · · , N − 1 satisfying

P2 (xN−l−1) − P2 (xN−l)
xN−l−1 − xN−l

� 1
2 (xU2 − xS1)

is defined as the absorbed region D2 of [xU1, xS1] under the Lévy noise.
Based on Definition 2, P2(x) and D2 for ε = −1.26 ∈ [εFold 2, εFold 1] and different noise

parameters are shown in Fig. 4. In addition, the ranges of D2 corresponding to different α,
β, d, and σ are presented in Table 2, respectively. In Fig. 4(a), D2 decreases first and then
increases with increasing α, and it is larger especially when α is close to 2. Furthermore, as
shown in Figs. 4(b)–4(d), the range of D2 decreases with decreasing β or increasing d and σ.
Obviously, all results here are different from the results in Fig. 2.

In fact, these differences appear because there is a sub-desirable state between the desirable
state and the undesirable state. From the energy landscape, a potential well is added between
the two potential wells, as shown in Fig. 5. This means that a particle needs to cross two
barriers to escape from the desirable state to the undesirable state. When α is smaller and
very close to 1, large jumps in the Lévy noise can directly induce a particle to escape to the
undesirable state. When α continues to increase, such as α = 1.5, the jumps in the Lévy noise
cannot directly induce the particle to escape to the undesirable state, while they can induce it
to switch between the desirable state and the sub-desirable state. In this case, only the particle
stays in the sub-desirable state, namely, it does not go back to the ideal state. Hence, the
probability that it escapes to the undesirable state in the next step will increase. Although the
decrease of β or increase of d and σ can promote the switching of the particles between the
desirable state and the sub-desirable state, it is not sufficient to cause the particles to escape to
the undesirable state. On the contrary, the changes of these parameters increase the likelihood
that the particles return to the desirable state, and reduce the probability that the particles
escape to the undesirable state, as shown in Figs. 4(b)–4(d). When α is further increased to
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Fig. 4 P2(x) and the corresponding D2 (bar-type) for ε = −1.26 and different parameters of the
Lévy noise: (a) β = −1, σ = 0.8, d = 0.1; (b) α = 1.5, σ = 0.8, d = 0.1; (c) α = 1.5, β = −1,
σ = 0.8; (d) α = 1.5, β = −1, d = 0.1 (color online)

Table 2 The ranges of D2 under different α, β, d, and σ

ε
α β

1.01 1.5 1.99 −1 −0.5 0

−1.26 [0.576, 0.701] [0.576, 0.678] [0.576, 1.430] [0.576, 0.678] [0.576, 0.754] [0.576, 0.951]

ε
d σ

0.1 0.4 0.7 0.2 0.5 0.8

−1.26 [0.576, 0.678] [0.576, 0.888] [0.576, 1.046] [0.576, 0.895] [0.576, 0.739] [0.576, 0.678]

be close to 2, the jumps in the Lévy noise gradually decrease. Once a particle escapes to the
sub-desirable state, in this case, it becomes difficult to return to the desirable state, which
in turn increases the possibility that the particle escapes to the non-ideal state, as shown in
Fig. 4(a). As stated above, small perturbations benefit more from the intermediate potential
function (the sub-desirable state), while large jumps benefit less[19].
4.3 Absorbed region within [xU2, xS2] under a fixed ε ∈(εFold1, εFold3]

For CT 3, the given line in the xP3(x)-plane is

y3 (x) =
1

xU2 − xS2
x +

xS2

xS2 − xU2
,

and it is a line connecting (xU2, 1) and (xS2, 0). Then, an approximate definition of the absorbed
region within [xU2, xS2] is given as follows.
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− −

Fig. 5 The general form of the the potential function U(x) of the system (1) with ε ∈ [εFold 2, εFold 1]

Definition 3 For ε ∈ (εFold 1, εFold 3], suppose that a tagged partition of [xU2, xS2] is a finite
sequence xU2 = x0 < x1 < · · · < xM−1 < xM = xS2. The set [xU2, xM−k] , xU2 < xM−k �
xS2, k = 0, 1, · · · , M − 1 satisfying

P3 (xM−k−1) − P3 (xM−k)
xM−k−1 − xM−k

� 1
2 (xU2 − xS2)

is defined as the absorbed region D3 of [xU2, xS2] under the Lévy noise.
Based on Definition 3, P3(x) and D3 for ε = −0.66 ∈ (εFold 1, εFold3] and different noise

parameters are shown in Fig. 6. In addition, the ranges of D3 corresponding to different α,

α
α
α

β
β −
β −

σ 
σ 
σ 

− − − −

− − − −

Fig. 6 P3(x) and the corresponding D3 (bar-type) for ε = 0.66 and different parameters of the Lévy
noise: (a) β = −1, σ = 0.8, d = 0.1; (b) α = 1.5, σ = 0.8, d = 0.1; (c) α = 1.5, β = −1,
σ = 0.8; (d) α = 1.5, β = −1, d = 0.1 (color online)
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β, d, and σ are presented in Table 3, respectively. The results show that the whole [xU2, xS2]
becomes D3 for different α, β, and d, as shown in Figs. 6(a)–6(c). Furthermore, the whole
[xU2, xS2] also becomes D3 when σ is larger, while a part of it becomes D3 when σ = 0, 2, as
shown in Fig. 6(d). It indicates that the intensity of Lévy noise plays a key role in the occurrence
of CT 3. Although Lévy-noise-induced CT 1 and CT 3 have similar escape problems between
two adjacent intervals, CT 3 is more likely to occur because the stability of the current state
of the system (1) with ε ∈ (εFold 1, εFold 3] is weaker than the undesirable state.

Table 3 The ranges of D3 under different α, β, d, and σ

ε
α β

1.01 1.5 1.99 −1 −0.5 0

0.66 [−0.953,−0.176] [−0.953,−0.176] [−0.953,−0.176] [−0.953,−0.176] [−0.953,−0.176] [−0.953,−0.176]

ε
d σ

0.1 0.4 0.7 0.2 0.5 0.8

0.66 [−0.953,−0.176] [−0.953,−0.176] [−0.953,−0.176] [−0.953,−0.555] [−0.953,−0.176] [−0.953,−0.176]

Although the part of [xU2, xS1], [xU1, xS1] or [xU2, xS2] that may be absorbed into [xS3, xU2]
can be quantified, we do not know how large the range of Di (i = 1, 2, 3) is, and the correspond-
ing asymmetric Lévy-noise-induced CT 1, CT 2 or CT 3 may occur.

5 PDBUR

Supposing that μ is a measurement of the length of an interval, a natural question is how
large μ(D1)/μ([xU2, xS1]), μ(D2)/μ([xU1, xS1]), or μ(D3)/μ([xU2, xS2]) is for asymmetric Lévy-
noise-induced CT 1, CT 2, or CT 3 to occur. This question will be answered here.
5.1 PDBUR of CT 1

Definition 4 For D1 and [xU2, xS1] under ε ∈ (εFold 4, εFold 2], the set of ε satisfying
μ1 � μ(D1)

μ([xU2,xS1])
� 0.5 is defined as the PDBUR U1(ε) of CT 1 under the Lévy noise.

Based on Definition 4, Fig. 7 shows the space diagrams of U1(ε) of CT 1 corresponding to
different parameters of Lévy noise. It is found that, the closer ε is to Fold 2, the larger the
range of U1(ε) is, which means that CT 1 is more likely to occur. Furthermore, the smaller α,
the smaller β, and the larger σ, which are related to the amplitude or the number of the large
jumps, can increase the possibility of CT 1 taking place, as shown in Figs. 7(a), 7(b), and 7(d).
While d, which describes the intensity of Gaussian, has almost no effect on U1(ε), as shown in
Fig. 7(c). Anyway, once ε and the noise parameters belong to U1(ε), there is a high possibility
that CT 1 is impending.
5.2 PDBUR of CT 2

Definition 5 For D2 and [xU1, xS1] under ε ∈ (εFold 2, εFold 1], the set of ε satisfying
μ2 � μ(D2)

μ([xU1,xS1])
� 0.5 is defined as the PDBUR U2(ε) of CT 2 under the Lévy noise.

Based on Definition 5, μ2 and U2(ε) corresponding to asymmetric Lévy-noise-induced
CT 2 are shown in Fig. 8. Similarly, CT 2 is more likely to occur when the system (1) is
close to Fold 1. Compared with U1(ε) in Fig. 7 above or U3(ε) in Fig. 9 below, however, the
range of U2(ε) is very small, especially for β and σ that are related to the amplitude or the
number of the large jumps. On the contrary, the range of U2(ε) is larger when α is close to 2,
namely, there are few jumps in the Lévy noise. Moreover, larger d describing the intensity of
the Gaussian also increases the possibility of CT 2 occurring. All results indicate that small
perturbations in the Lévy noise are conducive to the occurrence of a CT between non-adjacent
states.
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Fig. 7 PDBUR of the asymmetric Lévy-noise-induced CT 1, where the inserted plane represents
μ1 = 0.5: (a) U1(ε) under ε versus α; (b) U1(ε) under ε versus β; (c) U1(ε) under ε versus d;
(d) U1(ε) under ε versus σ (color online)
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Fig. 8 PDBUR of the asymmetric Lévy-noise-induced CT 2, where the inserted plane represents
μ2 = 0.5: (a) U2(ε) under ε versus α; (b) U2(ε) under ε versus β; (c) U2(ε) under ε versus d;
(d) U2(ε) under ε versus σ (color online)

Because VxU1 < 1, U2(ε) is different from the PDBUR of CT 1 or CT 3. It does not mean that
CT 2 must occur in its region, while it can show that x ∈ [xU1, xS1] under ε ∈ [εFold 2, εFold 1] has
a high probability of escaping to the undesirable state relative to the boundary condition VxU1 .
However, the quantization of the PDBUR of CT 2 can guide us in preventing a catastrophic
CT.
5.3 PDBUR of CT 3

Definition 6 For D3 and [xU2, xS2] under ε ∈ [εFold 1, εFold 3], the set of ε satisfying
μ3 � μ(D3)

μ([xU2,xS2])
� 0.5 is defined as the PDBUR U3(ε) of CT 3 under the Lévy noise.

Based on Definition 6, the space diagrams of U3(ε) of asymmetric Lévy-noise-induced CT 3
are shown in Fig. 9. Obviously, all the regions of ε versus α, ε versus β, ε versus d, and ε versus
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Fig. 9 PDBUR of the asymmetric Lévy-noise-induced CT 3, where the inserted plane represents
μ3 = 0.5: (a) U3(ε) under ε versus α; (b) U3(ε) under ε versus β; (c) U3(ε) under ε versus d;
(d) U3(ε) under ε versus σ (color online)

σ become U3(ε) under the given set of basic parameter values. This means that the Lévy noise
can easily induce CT 3 to occur in ε ∈ (εFold 1, εFold 3]. Moreover, our results show that μ3 is less
than 1 when σ is small, that is, [xU2, xS2] does not all become the absorbed region. Therefore,
σ plays an important role in this case. Our goal is to avoid ε and the noise parameters entering
U3(ε) in practical systems.

6 Conclusions

In this paper, we have focused on an asymmetric Lévy-noise-induced tri-stable model as a
concrete example to quantify the ranges of the parameters where CTs from the desirable state
directly to the undesirable state may occur. Based on the escape probability, the absorbed
regions that the current state of the given model is absorbed into the undesirable state corre-
sponding to CT 1, CT 2, and CT 3 are first defined. Then, the concept of the PDBUR under
the asymmetric Lévy noise is introduced. Once the control parameter and the noise parameters
enter the PDBUR of CT 1, CT 2, or CT 3, there is a high possibility that a catastrophic CT
is impending. Now, some managements should be adopted to avert it.

However, in the definitions of the absorbed region and the PDBUR, the scale factor is taken
as 1/2. More accurate results may be realized in terms of other values, which need to be further
explored and developed. Moreover, we take α = 1.5, β = −1, σ = 0.8, and d = 0.1 as a set of
basic parameter values in the calculation. Figures 6 and 9 have shown that the current state
of the given model is not all absorbed into the undesirable state when σ is smaller, such as
σ = 0.2. Therefore, more interesting phenomena may be obtained for other basic parameter
values. Our method may be regarded as a complement to existing early warning indicators,
and more general methods need to be established.
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[25] LOMHOLT, M. A., AMBJÖRNSSON, T., and METZLER, R. Optimal target search on a fast-
folding polymer chain with volume exchange. Physical Review Letters, 95, 260603 (2005)

[26] PALYULIN, V. V., BLACKBURN, G., LOMHOLT, M. A., WATKINS, N. W., METZLER, R.,
KLAGES, R., and CHECHKIN, A. V. First passage and first hitting times of Lévy flights and
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