ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Global warming driven by rising greenhouse-gas concentrations is expected to cause wet regions of the tropics and mid to high latitudes to get wetter and subtropical dry regions to get drier and expand polewards. Over southwest North America, models project a steady drop in precipitation minus evapotranspiration, P -- E, the net flux of water at the land surface, leading to, for example, a decline in Colorado River flow. This would cause widespread and important social and ecological consequences. Here, using new simulations from the Coupled Model Intercomparison Project Five, to be assessed in Intergovernmental Panel on Climate Change Assessment Report Five, we extend previous work by examining changes in P, E, runoff and soil moisture by season and for three different water resource regions. Focusing on the near future, 2021-2040, the new simulations project declines in surface-water availability across the southwest that translate into reduced soil moisture and runoff in California and Nevada, the Colorado River headwaters and Texas.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN24592-1 , Nature Climate Change; 3; 482-486
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: 16 of the CMIP5 models had all the data needed for this work for at least one simulation that was continuous from 1950 to 2040. Details of the models analyzed here are provided in Table S1. The model data analyzed here are available at http://strega.ldeo.columbia.edu:81/expert/home/.naomi/.AR5/.v2/.historical:rcp85/.mmm16/ a. Assessing the climatology of the models Despite increases in horizontal resolution of many models compared to their CMIP3 counterparts none of these models can adequately resolve the topography of the south west United States, such as the Sierra Nevada and Rocky Mountains and the associated orographic precipitation. This requires that caution be used when interpreting the results presented here. To assess the ability of the models to simulate the current hydroclimate, in Figure S1 we show the observed (from the Global Precipitation Climatology Centre gridded rain gauge data, (1)) monthly climatology of precipitation and the same for all the models and the multimodel mean for the California-Nevada, Colorado headwaters and Texas regions. The GPCC data uses rain gauges only and interpolates to regular grids of which we used the 1 by 1 one. Details of the data set can be found in (2). While the models apparently overestimate precipitation in California and Nevada the seasonal cycle with wet winters and dry summers is very well represented. It is also possible that the rain gauge observations are biased low by inadequately sampling the higher mountain regions. How ever the models might also be expected to underestimate orographic precipitation due to inadequate horizontal resolution. The 25 models are also too wet in the Colorado headwaters region but correctly represent the quite even distribution though the year. The bimodal distribution of precipitation in Texas, with peaks in May and September, and the absolute amounts, are well modeled but with the September peak too weak. The positive precipitation bias translates into a positive runoff bias for the Colorado headwaters as also shown in Figure S1. Here the observed runoff values are taken from simulations of the Variable Infiltration Capacity (VIC) land surface-hydrology model (3) forced by observed meteorology (5) that were conducted as part of the North American Land Data Assimilation System project phase 2 ( (NLDAS-2), http://www.emc.ncep.noaa.gov/mmb/nldas/. Runoff for California-Nevada is better simulated but there is a positive bias over Texas despite no strong precipitation bias. To check whether regional climate models better simulate P and runoff in these regions we analyzed the historical simulation with the Regional Climate Model version 3 driven by the National Centers for Environmental Prediction-Department of Energy Reanalysis 2 available from the North American Regional Climate Change Assessment Program (http://www.narccap.ucar.edu). This model configuration retained these biases in P and runoff although they were reduced in amplitude. Given these varying biases we plot P and P E changes in actual values but apply the simplest bias correction possible to the runoff and soil moisture values and show the modeled changes in terms of percentages of the 20th Century model climatologies. A thorough assessment of the simulation of North American climate in CMIP5 models is conducted in Sheffield at al. (North American Climate in CMIP5 Experiments. Part I: Evaluation of 20th Century Continental and Regional Climatology, manuscript submit ted to J. Climate, available at http://www.climate.noaa.gov/index.jsp?pg=./cpo pa/ mapp/cmip5 publications.html). Sheffield et al. analyze the climatology of precipitation, surface air temperature, low level winds, moisture fluxes, runoff etc. and conclude that the main features of the hydrological cycle, including characteristics of the atmospheric moisture balance and its seasonality, are captured in the CMP5 models subject to biases in total precipitation amounts. We chose to use all available models instead of selecting some and rejecting others based on an assessment of model realism. This is in accord with the suggestions of Mote et al. for CMIP3 (4) but future work needs to revisit this matter for the case of the CMIP5 ensemble.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN24592-2 , Nature Climate Change; 3; 482-486
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...