ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-18
    Description: The surface of Mars exhibits strong evidence for a widespread and long-lived cryosphere. Observations of the surface have identified phases produced by water-rock interactions, but the contribution of glaciers to the observed alteration mineralogy is unclear. To characterize the chemical alteration expected on an icy early Mars, we collected water and rock samples from terrestrial glaciated volcanics. We related geochemical measurements of meltwater to the mineralogy and chemistry of proglacial rock coatings. In these terrains, water is dominated by dissolved silica relative to other dissolved cations, particularly at mafic sites. Rock coatings associated with glacial striations on mafic boulders include a silica-rich component, indicating that silica precipitation is occurring in the subglacial environment. We propose that glacial alteration of volcanic bedrock is dominated by a combination of high rates of silica dissolution and precipitation of opaline silica. On Mars, cryosphere-driven chemical weathering could be the origin of observed silica-enriched phases.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN59509 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 15; 7371-7381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rock in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September 2014 and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three mudstone samples (targets Confidence Hills, Mojave 2, and Telegraph Peak) to its internal instruments, including the CheMin XRD/XRF.
    Keywords: Geophysics
    Type: JSC-CN-34485 , American Geophysical Union (AGU) Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502 C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (〈53 microns) with varying Fe amounts (Fe(0.66)X(0.34)- to Fe(0.99)X(0.01)-CO3, where X refers to Mg and/or Mn) were selected for T/EGA. The carbonates were heated from 25 to 715 C (35 C/min) and evolved CO2 was measured as a function of temperature. The highest Fe containing carbonates (e.g., Fe(0.99)X(0.01)-CO3) yielded CO2 peak temperatures between 466-487 C, which is consistent with the high temperature RN CO2 release. The lower Fe-bearing carbonates (e.g., Fe(0.66)X(0.34)CO3) did not have peak CO2 release temperatures that matched the RN peak CO2 temperatures; however, their entire CO2 releases did occur within RN temperature range of the high temperature CO2 release. Results from this laboratory analog analysis demonstrate that the high temperature RN CO2 release is consistent with Fe-rich carbonate (approx.0.7 to 1 wt.% FeCO3). The similar RN geochemistry with other materials in Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through metamorphic and/or metasomatic processes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-34426 , American Geophysical Union Conference; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Three years into exploration of sediments in Gale crater on Mars, the Mars Science Laboratory rover Curiosity has provided data on several modes and episodes of diagenetic mineral formation. Curiosity determines mineralogy principally by X-ray diffraction (XRD), but with supporting data from thermal-release profiles of volatiles, bulk chemistry, passive spectroscopy, and laser-induced breakdown spectra of targeted spots. Mudstones at Yellowknife Bay, within the landing ellipse, contain approximately 20% phyllosilicate that we interpret as authigenic smectite formed by basalt weathering in relatively dilute water, with associated formation of authigenic magnetite as in experiments by Tosca and Hurowitz [Goldschmidt 2014]. Varied interlayer spacing of the smectite, collapsed at approximately 10 A or expanded at approximately 13.2 A, is evidence of localized diagenesis that may include partial intercalation of metal-hydroxyl groups in the approximately 13.2 A material. Subsequent sampling of stratigraphically higher Windjana sandstone revealed sediment with multiple sources, possible concentration of detrital magnetite, and minimal abundance of diagenetic minerals. Most recent sampling has been of lower strata at Mount Sharp, where diagenesis is widespread and varied. Here XRD shows that hematite first becomes abundant and products of diagenesis include jarosite and cristobalite. In addition, bulk chemistry identifies Mg-sulfate concretions that may be amorphous or crystalline. Throughout Curiosity's traverse, later diagenetic fractures (and rarer nodules) of mm to dm scale are common and surprisingly constant and simple in Ca-sulfate composition. Other sulfates (Mg,Fe) appear to be absent in this later diagenetic cycle, and circumneutral solutions are indicated. Equally surprising is the rarity of gypsum and common occurrence of bassanite and anhydrite. Bassanite, rare on Earth, plays a major role at this location on Mars. Dehydration of gypsum to bassanite in the dry atmosphere of Mars has been proposed but considered unlikely based on lab studies of dehydration kinetics in powdered samples. Dehydration is even less likely for bulk vein samples, as lab data show dehydration rates one to two orders of magnitude slower in bulk samples than in powders. On Mars, exposure ages of 100 Ma or more may be a significant factor in dehydration of hydrous phases.
    Keywords: Geosciences (General)
    Type: JSC-CN-34376 , Geological Society of America Meeting and Exposition (GSA 2015); Nov 01, 2015 - Nov 04, 2015; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during soil formation, however, the limited interaction with water and low temperatures may result in the formation of "immature" X-ray amorphous or SRO materials. Perhaps, a similar process contributes to the formation of the high content of X-ray amorphous materials detected on Mars.
    Keywords: Earth Resources and Remote Sensing; Lunar and Planetary Science and Exploration
    Type: JSC-CN-34194 , AGU 2015: Fall American Geophysical Union Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory (MSL) rover Curiosity recently completed its fourth drill sampling of sediments on Mars. The Confidence Hills (CH) sample was drilled from a rock located in the Pahrump Hills region at the base of Mt. Sharp in Gale Crater. The CheMin X-ray diffractometer completed five nights of analysis on the sample, more than previously executed for a drill sample, and the data have been analyzed using Rietveld refinement and full-pattern fitting to determine quantitative mineralogy. Confidence Hills mineralogy has several important characteristics: 1) abundant hematite and lesser magnetite; 2) a 10 angstrom phyllosilicate; 3) multiple feldspars including plagioclase and alkali feldspar; 4) mafic silicates including forsterite, orthopyroxene, and two types of clinopyroxene (Ca-rich and Ca-poor), consistent with a basaltic source; and 5) minor contributions from sulfur-bearing species including jarosite.
    Keywords: Chemistry and Materials (General); Lunar and Planetary Science and Exploration
    Type: JSC-CN-32870 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-31338 , International Conference on Mars; Jul 14, 2014 - Jul 18, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The CheMin X-ray diffraction (XRD) instrument onboard the Mars Science Laboratory rover Curiosity in Gale Crater, Mars, discovered smectite in drill fines of the Sheepbed mudstone at Yellowknife Bay (YNB). The mudstone has a basaltic composition, and the XRD powder diffraction pattern shows smectite 02l diffraction bands peaking at 4.59 A for targets John Klein and Cumberland, consistent with tri-octahedral smectites (saponite). From thermal analysis, the saponite abundance is ~20 wt. %. Among terrestrial analogues we have studied, ferrian saponite from Griffith Park (Los Angeles, CA) gives the best match to the position of the 02l diffraction band of YNB saponites. Here we describe iron-rich saponites from a terrestrial perspective, with a focus on Griffith saponite, and discuss their implications for the mineralogy of Sheepbed saponite and its formation pathways. Iron-rich saponite: Iron-rich saponite on the Earth is recognized as a low-temperature (〈100 C), authigenic alteration product of basalt [e.g., 4-16]. In the discussion that follows, we reference the position of the 02l band because it is a measure of the unit cell 'b' dimension of the octahedral layer and thus the cations (including Fe redox state) in the octahedral layer. Ordinarily, the 06l band near 1.5 A is used to determine the 'b' dimension of smectite, but this band is not accessible with MSL CheMin instrument. For reference, a ferrosaponite (i.e., Fe2+ saponite) studied by [15] has a 02l spacing of 4.72 A and Fe3+/Fe = 0.27 [15]. Samples of terrestrial ferrosaponite, however, are reported to oxidize on the timescale of days when removed from their natural environment and not protected from oxidation. The Griffith saponite is Mg-rich ferrian saponite, and sample AMNH 89172 has an 02l spacing of 4.59 A (same as the Sheepbed saponites) and Fe3+/Fe = 0.64 [3]. This similarity suggests that Sheepbed saponites are ferrian (incompletely oxidized ferrosaponite). More oxidized Griffith saponites (Fe3+/Fe 〉 0.90) have somewhat smaller 02l d-spacings and also show Mossbauer evidence for an XRD amorphous Fe-bearing phase (e.g., ferrihydrite, hisingerite, superparamagnetic ferric oxides, etc.). The Griffith saponite occurs as vesicle fills, as replacements of olivine, and as replacements of mesostasis (basaltic glass). Similar occurrence modes are reported elsewhere. Hisingerite has been proposed by [13] as the alteration product of ferrian saponite whose precursor by oxidation was ferrosaponite.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-31327 , International Conference on Mars; Jul 14, 2014 - Jul 18, 2014; Pasadena, California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory Curiosity rover arrived at Mars in August 2012 with a primary goal of characterizing the habitability of ancient and modern environments. Curiosity landed in Gale crater to study a sequence of ~3.5 Ga old sedimentary rocks that, based on orbital visible/near-infrared reflectance spectra, contain secondary minerals that suggest deposition and/or alteration in liquid water. The sedimentary sequence that comprises the lower slopes of Mount Sharp within Gale crater may preserve a dramatic shift on early Mars from a relatively warm and wet climate to a cold and dry climate based on a transition from smectite-bearing strata to sulfate-bearing strata. The rover is equipped with cameras and geochemical and mineralogical instruments to examine the sedimentology and identify compositional changes within the stratigraphy. These observations provide information about variations in depositional and diagenetic environments over time. The Chemistry and Mineralogy (CheMin) instrument is one of two internal laboratories on Curiosity and includes a transmission X-ray diffractometer (XRD) and X-ray fluorescence (XRF) spectrometer with a Co-K source. CheMin measures loose sediment samples scooped from the surface and drilled rock powders. The XRD provides quantitative mineralogy of scooped and drilled samples to a detection limit of ~1 wt.%. Curiosity has traversed 〉20 km since landing and has primarily been exploring the site of a predominantly ancient lake environment fed by groundwater and streams emanating from the crater rim. Results from CheMin demonstrate an incredible diversity in the mineralogy of fluvio-lacustrine rocks that signify variations in source rock composition, sediment transport mechanisms, and depositional and diagenetic fluid chemistry. Abundant trioctahedral smectite and magnetite at the base of the section may have formed from low-salinity pore waters with a circumneutral pH within lake sediments. A transition to dioctahedral smectite, hematite, and Ca-sulfate going up section suggests a change to more saline and oxidative aqueous conditions within the lake waters themselves and/or within diagenetic fluids. The primary minerals detected in fluvio-lacustrine samples by CheMin also suggest diversity in the igneous source regions for the sediments, where abundant pyroxene and plagioclase in most samples suggest a basaltic protolith, but sanidine and pyroxene in one sample may have been sourced from a potassic trachyte, and tridymite and sanidine in another sample may have been transported from a rhyolitic source. Crystal chemistry of major phases in each sample have been calculated from refined unit-cell parameters, providing further constraints on aqueous alteration processes and igneous protoliths for the sediments. Perhaps one of the biggest mysteries revealed by the CheMin instrument is the high abundance of X-ray amorphous materials (15 to 73 wt.%) in all samples measured to date. X-ray amorphous materials were detected by CheMin based on the observation of broad humps in XRD patterns. How these materials formed, their composition, and why they persist near the martian surface remain a topic of debate. The sedimentology and composition of the rocks analyzed by Curiosity demonstrate that habitable environments persisted intermittently on the surface or in the subsurface of Gale crater for perhaps more than a billion years.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN68597 , Mineralogical Society of America Centennial (1919-2019) Symposium; Jun 20, 2019 - Jun 21, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...