ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest that the PAHs are indigenous to the meteorite. High-resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and Fe-sulfides. The carbonate globules are similar in texture and size to some terrestrial bacterially induced carbonate precipitates. Although inorganic formation is possible, formation of the globules by biogenic processes could explain many of the observed features, including the PAHs. The PAHs, the carbonate globules, and their associated secondary mineral phases and textures could thus be fossil remains of a past martian biota.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 273; 5277; 924-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.
    Keywords: Exobiology
    Type: Science (ISSN 0036-8075); Volume 283; 5405; 1135-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Infrared spectral properties of silicate grains in interplanetary dust particles (IDPs) were compared with those of astronomical silicates. The approximately 10-micrometer silicon-oxygen stretch bands of IDPs containing enstatite (MgSiO3), forsterite (Mg2SiO4), and glass with embedded metal and sulfides (GEMS) exhibit fine structure and bandwidths similar to those of solar system comets and some pre-main sequence Herbig Ae/Be stars. Some GEMS exhibit a broad, featureless silicon-oxygen stretch band similar to those observed in interstellar molecular clouds and young stellar objects. These GEMS provide a spectral match to astronomical "amorphous" silicates, one of the fundamental building blocks from which the solar system is presumed to have formed.
    Keywords: Exobiology
    Type: Science (ISSN 0036-8075); Volume 285; 5434; 1716-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The ability of living organisms to survive on the smaller bodies in our solar system is examined. The three most significant sterilizing effects include ionizing radiation, prolonged extreme vacuum, and relentless thermal inactivation. Each could be effectively lethal, and even more so in combination, if organisms at some time resided in the surfaces of airless small bodies located near or in the inner solar system. Deep within volatile-rich bodies, certain environments theoretically might provide protection of dormant organisms against these sterilizing factors. Sterility of surface materials to tens or hundreds of centimeters of depth appears inevitable, and to greater depths for bodies which have resided for long periods sunward of about 2 A.U.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life (ISSN 0169-6149); Volume 29; 5; 521-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z; p 1391-1392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: TOF MS for Europa landed science can identify small molecules of the cryosphere and complex biomolecules upwelling from a subsurface water ocean. A matrix-assisted laser-desorption ionization (MALDI) testbed for cryo-ice mixtures is being developed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: The Genesis spacecraft, launched in 2001, traveled to a Lagrangian point between the Earth and Sun to collect particles from the solar wind and return them to Earth. However, during the return of the spacecraft in 2004, the parachute failed to open during descent, and the Genesis spacecraft crashed into the Utah desert. Many of the solar wind collectors were broken into smaller pieces, and the field team rapidly collected the capsule and collector pieces for later assessment. On each of the next few days, the team discovered that various collectors had survived intact, including three of four concentrator targets. Within a month, the team had imaged more than 10,000 fragments and packed them for transport to the Astromaterials Acquisition and Curation Office within the ARES Directorate at JSC. Currently, the Genesis samples are curated along with the other extraterrestrial sample collections within ARES. Although they were broken and dirty, the Genesis solar wind collectors still offered the science community the opportunity to better understand our Sun and the solar system as a whole. One of the more highly prized concentrator collectors survived the crash almost completely intact. The Genesis Concentrator was designed to concentrate the solar wind by a factor of at least 20 so that solar oxygen and nitrogen isotopes could be measured. One of these materials was the Diamond-on-Silicon (DoS) concentrator target. Unfortunately, the DoS concentrator broke on impact. Nevertheless, the scientific value of the DoS concentrator target was high. The Genesis Allocation Committee received a request for approximately 1 cm(sup 2) of the DoS specimen taken near the focal point of the concentrator for the analysis of solar wind nitrogen isotopes. The largest fragment, Genesis sample 60000, was designated for this allocation and needed to be precisely cut. The requirement was to subdivide the designated sample in a manner that prevented contamination of the sample and minimized the risk of losing or breaking the precious requested sample fragment. The Genesis curator determined that the use of laser scribing techniques to "cut" a precise line and subsequently cleave the sample (in a controlled break of the sample along that line) was the best method for accomplishing the sample subdivision. However, there were risks, including excess heating of the sample, that could cause some of the implanted solar wind to be lost via thermal diffusion. Accidentally breaking the sample during the handling and cleaving process was an additional risk. Early in fiscal year 2013, to address this delicate, complicated task, the ARES Directorate assembled its top scientists to develop a cutting plan that would ensure success when applied to the actual concentrator target wafer; i.e., to produce an approximately 1 cm(sup 2) piece from the requested area of the wafer. The team, subsequently referred to as the JSC Genesis Tiger Team, spent months researching and testing parameters and techniques related to scribing, cleaving, transporting, handling, and holding (i.e., mounting) the specimen. The investigation required considerable "thinking outside the box," and many, many trials using nonflight wafer analogs. After all preliminary testing, the following method was adopted as the final cutting plan. It was used in two final end-to-end practice runs before being used on the actual flight target wafer. The wafer was oriented on the laser cutting stage with the 100 and 010 directions of the wafer parallel to the corresponding X and Y directions of the cutting stage. The laser was programed to scribe 31 lines of the appropriate length along the Y stage direction. The programed scribe lines were separated by 5 micron in the X direction. The laser parameters were set as follows: (1) The laser power was 0.5 watts; (2) each line consisted of 50 passes, with the Z position being advanced 5 micron per pass; and (3) 30 s would elapse before the next line was scribed to allow for wafer cool down from any possible heating via the laser. The ablated material that "stuck" in the "scribe-cut" was removed from the "cut" using an ultrasonic micro-tool. After all the ablated silicon was removed from the wafer, the wafer was repositioned in exactly the same orientation on the laser stage. The laser was focused using the bottom of the wafer channel, and the 31-line scribing pattern described above was reprogrammed using the Z position of the groove bottom as the starting Z value instead of the top wafer surface, which was used previously. Upon completion of the second set of scribes, the ultrasonic micro-tool was again used to clean out the cut. The wafer was remounted on the stage in exactly the same orientation as before. The laser was again focused on the bottom of the groove. This time, however, the laser was.programed to scribe only one line down the exact center of the channel. The final scribe line consisted of 100 passes with a Z advance of 5 micron per pass and with the laser power set at 0.5 watts. As mentioned above, the final cutting plan was practiced in two end-to-end trials using non-flight, triangular-shaped silicon wafers similar in size and orientation to the actual DOS 60000 target sample. The actual scribing of the triangular-shaped wafers required scribing two lines and cleaving (i.e. scribe-cleave, then scribe-cleave) to obtain the piece requested for allocation. Early in December 2012, after many months of experiments and practicing and perfecting the techniques and procedures, the team successfully subdivided the Genesis DoS 60000 target sample, one of the most scientifically important samples from the Genesis mission (figure 2). On December 17, 2012, the allocated piece of concentrator target sample was delivered to the requesting principal investigator.The cutting plan developed for the subdivision of this sample will be used as the model for subdividing future requested Genesis flight wafers (appropriately modified for different wafer types).
    Keywords: Lasers and Masers
    Type: ARES Biennial Report 2012 Final; 44-46; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-25
    Description: We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 309-310
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: The exploration of the possible emergence and duration of life on Mars from landed platforms requires attention to the quality of measurements that address these objectives. In particular, the potential impact of terrestrial contamination on the measurement of reduced carbon with sensitive in situ instruments must be addressed in order to reach definitive conclusions regarding the source of organic molecules. Following the recommendation of the Mars Exploration Program Analysis Group (MEPAG) at its September 2003 meeting [MEPAG, 2003], the Mars Program Office at NASA Headquarters chartered the Organic Contamination Science Steering Group (OCSSG) to address this issue. The full report of the six week study of the OCSSG can be found on the MEPAG web site [1]. The study was intended to define the contamination problem and to begin to suggest solutions that could provide direction to the engineering teams that design and produce the Mars landed systems. Requirements set by the Planetary Protection Policy in effect for any specific mission do not directly address this question of the potential interference from terrestrial contaminants during in situ measurements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXII; LPI-Contrib-1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...