ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP's ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This papersummarizes the IMAP mission at the start of Phase A development.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN63041 , Space Science Reviews (ISSN 0038-6308) (e-ISSN 1572-9672); 214; 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN8849 , Astrophysical Journal; 754; 1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The relationship between electron energy flux and the characteristic energy of electron distributions in the main auroral loss cone bridges the gap between predictions made by theory and measurements just recently available from Juno. For decades such relationships have been inferred from remote sensing observations of the Jovian aurora, primarily from the Hubble Space Telescope, and also more recently from Hisaki. However, to infer these quantities, remote sensing techniques had to assume properties of the Jovian atmospheric structure - leading to uncertainties in their profile. Juno's arrival and subsequent auroral passes have allowed us to obtain these relationships unambiguously for the first time, when the spacecraft passes through the auroral acceleration region. Using Juno /Jupiter Energetic particle Detector Instrument (JEDI), an energetic particle instrument, we present these relationships for the 30-kiloelectronvolts to 1-megaelectronvolts electron population. Observations presented here show that the electron energy flux in the loss cone is a nonlinear function of the characteristic or mean electron energy and supports both the predictions from Knight (1973, https://doi.org/10.1016/0032-0633(73)90093-7) and magnetohydrodynamic turbulence acceleration theories (e.g., Saur et al., 2003, https://doi.org/10.1029/2002GL015761). Finally, we compare the in situ analyses of Juno with remote Hisaki observations and use them to help constrain Jupiter's atmospheric profile. We find a possible solution that provides the best agreement between these data sets is an atmospheric profile that more efficiently transports the hydrocarbons to higher altitudes. If this is correct, it supports the previously published idea (e.g., Parkinson et al., 2006, https://doi.org/10.1029/2005JE002539) that precipitating electrons increase the hydrocarbon eddy diffusion coefficients in the auroral regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN63152 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 123; 9; 7554-7567
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...