ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • 1
    Publication Date: 2019-07-13
    Description: The correlation between measured tropospheric ozone (O3) and carbon monoxide (CO) has been used extensively in tropospheric chemistry studies to explore the photochemical characteristics of different regions and to evaluate the ability of models to capture these characteristics. Here, we present the first study that uses multi-year, global, vertically resolved, simultaneous and collocated O3 and CO satellite (Tropospheric Emission Spectrometer) measurements, to determine this correlation in the middle/lower free troposphere for two different seasons, and to evaluate two chemistry-climate models. We find results that are fairly robust across different years, altitudes and timescales considered, which indicates that the correlation maps presented here could be used in future model evaluations. The highest positive correlations (around 0.8) are found in the northern Pacific during summer, which is a common feature in the observations and the G-PUCCINI model. We make quantitative comparisons between the models using a single-figure metric (C), which we define as the correlation coefficient between the modeled and the observed O3-CO correlations for different regions of the globe. On a global scale, the G-PUCCINI model shows a good performance in the summer (C =0.71) and a satisfactory performance in the winter (C = 0.52). It captures midlatitude features very well, especially in the summer, whereas the performance in regions like South America or Central Africa is weaker. The UKCA model (C = 0.46/0.15 for July-August/December-January on a global scale) performs better in certain regions, such as the tropics in winter, and it captures some of the broad characteristics of summer extratropical correlations, but it systematically underestimates the O3-CO correlations over much of the globe. It is noteworthy that the correlations look very different in the two models, even though the ozone distributions are similar. This demonstrates that this technique provides a powerful global constraint for understanding modeled tropospheric chemical processes. We investigated the sources of the correlations by performing a series of sensitivity experiments. In these, the sign of the correlation is, in most cases, insensitive to removing different individual emissions, but its magnitude changes downwind of emission regions when applying such perturbations. Interestingly, we find that the O3-CO correlation does not solely reflect the strength of O3 photochemical production, as often assumed by earlier studies, but is more complicated and may reflect a mixture of different processes such as transport.
    Keywords: Environment Pollution
    Type: GSFC.JA.5194.2011 , Atmospheric Chemistry and Physics; 11; 5819-5838
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in theMBC value does not necessarilymatch a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate.
    Keywords: Meteorology and Climatology; Geophysics
    Type: GSFC-E-DAA-TN54829 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 119; 5; 2555–2573
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in the MBC value does not necessarily match a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN11839 , Journal of Geophysical Research - Atmospheres; 119; 5; 2555-2573
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated, simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993-2012). The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes.Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA’s long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements - including high altitude observations from the NASA Global Hawk platform. The models generally capture the seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model-measurement correlation (r ≥ 0.7) and a low sensitivity to the choice of emission inventory, at most sites. In a given model, the absolute model-measurement agreement is highly sensitive to the choice of emissions and inter-model differences are also apparent, even when using the same inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve optimal agreement to surface CHBr3 observations using the lowest of the three CHBr3 emission inventories tested (similarly, 8 out of 11 models for CH2 Br2). In general, the models are able to reproduce well observations of CHBr3 and CH2 Br2 obtained in the tropical tropopause layer (TTL) at various locations throughout the Pacific. Zonal variability in VSLS loading in the TTL is generally consistent among models, with CHBr3 (and to a lesser extent CH2 Br2) most elevated over the tropical West Pacific during boreal winter. The models also indicate the Asian Monsoon during boreal summer to be an important pathway for VSLS reaching the stratosphere, though the strength of this signal varies considerably among models. We derive an ensemble climatological mean estimate of the stratospheric bromine SGI from CHBr3 and CH2 Br2 of 2.0 (1.2-2.5) ppt, ≫ 57% larger than the best estimate from the most recent World Meteorological Organization (WMO) Ozone Assessment Report. We find no evidence for a long-term, transport-driven trend in the stratospheric SGI of bromine over the simulation period. However, transport-driven inter-annual variability in the annual mean bromine SGI is of the order of a ±5%, with SGI exhibiting a strong positive correlation with ENSO in the East Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...