ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (163)
Collection
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1995), S. 101-112 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Evaluation of competing El Niño/Southern Oscillation (ENSO) theories requires one to identify separate spectral peaks in equatorial wind and sea-surface temperature (SST) time series. To sharpen this identification, we examine the seasonal-to-interannual variability of these fields by the data-adaptive method of multi-channel singular spectrum analysis (M-SSA). M-SSA is applied to the equatorial band (4°N-4°S), using 1950–1990 data from the Comprehensive Ocean and Atmosphere Data Set. Two major interannual oscillations are found in the equatorial SST and surface zonal wind fields, U. The main peak is centered at about 52-months; we refer to it as the quasi-quadrennial (QQ) mode. Quasi-biennial (QB) variability is split between two modes, with periods near 28 months and 24 months. A faster, 15-month oscillation has smaller amplitude. The QQ mode dominates the variance and has the most distinct spectral peak. In time-longitude reconstructions of this mode, the SST has the form of a standing oscillation in the eastern equatorial Pacific, while the U-field is dominated by a standing oscillation pattern in the western Pacific and exhibits also slight eastward propagation in the central and western Pacific. The locations of maximum anomalies in both QB modes are similar to those of the QQ mode. Slight westward migration in SST, across the eastern and central, and eastward propagation of U, across the western and central Pacific, are found. The significant wind anomaly covers a smaller region than for the QQ. The QQ and QB modes together represent the ENSO variability well and interfere constructively during major events. The sharper definition of the QQ spectral peak and its dominance are consistent with the “devil's staircase” interaction mechanism between the annual cycle and ENSO.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1995), S. 101-112 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Evaluation of competing El Niño/Southern Oscillation (ENSO) theories requires one to identify separate spectral peaks in equatorial wind and sea-surface temperature (SST) time series. To sharpen this identification, we examine the seasonal-to-interannual variability of these fields by the data-adaptive method of multi-channel singular spectrum analysis (M-SSA). M-SSA is applied to the equatorial band (4° N-4° S), using 1950–1990 data from the Comprehensive Ocean and Atmosphere Data Set. Two major interannual oscillations are found in the equatorial SST and surface zonal wind fields, U. The main peak is centered at about 52-months; we refer to it as the quasi-quadrennial (QQ) mode. Quasi-biennial (QB) variability is split between two modes, with periods near 28 months and 24 months. A faster, 15-month oscillation has smaller amplitude. The QQ mode dominates the variance and has the most distinct spectral peak. In time-longitude reconstructions of this mode, the SST has the form of a standing oscillation in the eastern equatorial Pacific, while the U-field is dominated by a standing oscillation pattern in the western Pacific and exhibits also slight eastward propagation in the central and western Pacific. The locations of maximum anomalies in both QB modes are similar to those of the QQ mode. Slight westward migration in SST, across the eastern and central, and eastward propagation of U, across the western and central Pacific, are found. The significant wind anomaly covers a smaller region than for the QQ. The QQ and QB modes together represent the ENSO variability well and interfere constructively during major events. The sharper definition of the QQ spectral peak and its dominance are consistent with the "devil's staircase" interaction mechanism between the annual cycle and ENSO.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 9247–9290, doi:10.1175/JCLI-D-12-00593.1.
    Description: This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.
    Description: The authors acknowledge the support of NOAA/Climate Program Office/Modeling, Analysis, Predictions and Projections (MAPP) program as part of the CMIP5 Task Force.
    Description: 2014-06-01
    Keywords: North America ; Regional effects ; Coupled models ; Decadal variability ; Interannual variability ; Intraseasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-17
    Description: A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014–2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation–buoyancy relation across the tropics. Deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-23
    Description: Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to 〉1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-01-17
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-01
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-01
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-23
    Description: The relationships between the onset of tropical deep convection, column water vapor (CWV), and other measures of conditional instability are analyzed with 2 yr of data from the DOE Atmospheric Radiation Measurement (ARM) Mobile Facility in Manacapuru, Brazil, as part of the Green Ocean Amazon (GOAmazon) campaign, and with 3.5 yr of CWV derived from global positioning system meteorology at a nearby site in Manaus, Brazil. Important features seen previously in observations over tropical oceans—precipitation conditionally averaged by CWV exhibiting a sharp pickup at high CWV, and the overall shape of the CWV distribution for both precipitating and nonprecipitating points—are also found for this tropical continental region. The relationship between rainfall and CWV reflects the impact of lower-free-tropospheric moisture variability on convection. Specifically, CWV over land, as over ocean, is a proxy for the effect of free-tropospheric moisture on conditional instability as indicated by entraining plume calculations from GOAmazon data. Given sufficient mixing in the lower troposphere, higher CWV generally results in greater plume buoyancies through a deep convective layer. Although sensitivity of buoyancy to other controls in the Amazon is suggested, such as boundary layer and microphysical processes, the CWV dependence is consistent with the observed precipitation onset. Overall, leading aspects of the relationship between CWV and the transition to deep convection in the Amazon have close parallels over tropical oceans. The relationship is robust to averaging on time and space scales appropriate for convective physics but is strongly smoothed for averages greater than 3 h or 2.5°.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-29
    Description: The baroclinic-to-barotropic pathway in ENSO teleconnections is examined from the viewpoint of a barotropic Rossby wave source that results from decomposition into barotropic and baroclinic components. Diagnoses using the NCEP–NCAR reanalysis are supplemented by analysis of the response of a tropical atmospheric model of intermediate complexity to the NCEP–NCAR barotropic Rossby wave source. Among the three barotropic Rossby wave source contributions (shear advection, vertical advection, and surface drag), the leading contribution is from shear advection and, more specifically, the mean baroclinic zonal wind advecting the anomalous baroclinic zonal wind. Vertical advection is the smallest term, while surface drag tends to cancel and reinforce the shear advection in different regions through damping on the baroclinic mode, which spins up a barotropic response. There are also nontrivial impacts of transients in the barotropic wind response to ENSO. Both tropical and subtropical baroclinic vorticity advection contribute to the barotropic component of the Pacific subtropical jet near the coast of North America, where the resulting barotropic wind contribution approximately doubles the zonal jet anomaly at upper levels, relative to the baroclinic anomalies alone. In this view, the barotropic Rossby wave source in the subtropics simply arises from the basic-state baroclinic flow acting on the well-known baroclinic ENSO flow pattern that spreads from the deep tropics into the subtropics over a scale of equatorial radius of deformation. This is inseparably connected to the leading deep tropical Rossby wave source that arises from eastern Pacific climatological baroclinic winds advecting the tropical portion of the same ENSO flow pattern.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...