ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-09-01
    Description: We tested the theory that reactive oxygen species cause aging. We augmented the natural antioxidant systems of Caenorhabditis elegans with small synthetic superoxide dismutase/catalase mimetics. Treatment of wild-type worms increased their mean life-span by a mean of 44 percent, and treatment of prematurely aging worms resulted in normalization of their life-span (a 67 percent increase). It appears that oxidative stress is a major determinant of life-span and that it can be counteracted by pharmacological intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Melov, S -- Ravenscroft, J -- Malik, S -- Gill, M S -- Walker, D W -- Clayton, P E -- Wallace, D C -- Malfroy, B -- Doctrow, S R -- Lithgow, G J -- AG-13154/AG/NIA NIH HHS/ -- NS21328/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1567-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Buck Institute for Age Research, Novato, CA 94949, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968795" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*drug effects ; Animals ; Antioxidants/*pharmacology ; Caenorhabditis elegans/drug effects/*physiology ; Catalase/*metabolism ; Disorders of Sex Development ; Fertility/drug effects ; Longevity/drug effects ; Molecular Mimicry ; Oxidative Stress ; Reactive Oxygen Species/metabolism ; Superoxide Dismutase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-06-03
    Description: Checkpoints are evolutionarily conserved signaling mechanisms that arrest cell division and alter cellular stress resistance in response to DNA damage or stalled replication forks. To study the consequences of loss of checkpoint functions in whole animals, checkpoint genes were inactivated in the nematode C. elegans. We show that checkpoint proteins are not only essential for normal development but also determine adult somatic maintenance. Checkpoint proteins play a role in the survival of postmitotic adult cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Anders -- Vantipalli, Maithili C -- Lithgow, Gordon J -- AG21069/AG/NIA NIH HHS/ -- AG22868/AG/NIA NIH HHS/ -- NS050789-01/NS/NINDS NIH HHS/ -- R01 AG021069/AG/NIA NIH HHS/ -- R01 AG021069-04/AG/NIA NIH HHS/ -- R01 AG022868/AG/NIA NIH HHS/ -- R01 AG022868-04/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2006 Jun 2;312(5778):1381-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Buck Institute, 8001 Redwood Boulevard, Novato, CA 94945, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16741121" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics/physiology ; Animals ; Caenorhabditis elegans/cytology/growth & development/*physiology ; Caenorhabditis elegans Proteins/genetics/*physiology ; Cell Cycle Proteins/genetics/*physiology ; Cell Survival ; Heat-Shock Proteins/biosynthesis/genetics ; Mitosis/genetics/*physiology ; Mutation ; Protein Kinases/metabolism ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-11-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vaupel, J W -- Johnson, T E -- Lithgow, G J -- P01-AG08761/AG/NIA NIH HHS/ -- R01-AG08332/AG/NIA NIH HHS/ -- R01-AG10248/AG/NIA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):826; author reply 828.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973641" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Genotype ; Longevity ; Mortality
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lithgow, G J -- Kirkwood, T B -- New York, N.Y. -- Science. 1996 Jul 5;273(5271):80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biologicag Gerontology Group, University of Manchester, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658201" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Animals ; *Biological Evolution ; Caenorhabditis elegans/*genetics/*physiology ; *Genes, Helminth ; Longevity/genetics ; Mutation ; Oxidative Stress ; Temperature ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-02-04
    Description: Age-specific mortality rates in isogenic populations of the nematode Caenorhabditis elegans increase exponentially throughout life. In genetically heterogeneous populations, age-specific mortality increases exponentially until about 17 days and then remains constant until the last death occurs at about 60 days. This period of constant age-specific mortality results from genetic heterogeneity. Subpopulations differ in mean life-span, but they all exhibit near exponential, albeit different, rates of increase in age-specific mortality. Thus, much of the observed heterogeneity in mortality rates later in life could result from genetic heterogeneity and not from an inherent effect of aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks, A -- Lithgow, G J -- Johnson, T E -- K04-AG00369/AG/NIA NIH HHS/ -- R01-AG08332/AG/NIA NIH HHS/ -- R01-AG10248/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 4;263(5147):668-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Behavioral Genetics, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303273" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Caenorhabditis elegans/genetics/*physiology ; *Genetic Variation ; Kinetics ; Longevity/genetics ; Mortality
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...