ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • stability  (1)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    ISSN: 1573-904X
    Schlagwort(e): nanoparticles ; poly(lactic acid) ; poly(lactic acid-co-ethylene oxide) ; freeze-drying ; stability ; flow cytometry
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract Purpose. To investigate the feasibility of producing freeze-dried poly-(ethylene oxide) (PEO)-surface modified nanoparticles and to study their ability to avoid the mononuclear phagocytic system (MPS), as a function of the PEO chain length and surface density. Methods. The nanoparticles were produced by the salting-out method using blends of poly(D,L-lactic acid) (PLA) and poly(D,L-lactic acid-co-ethylene oxide) (PLA-PEO) copolymers. The nanoparticles were purified by cross-flow filtration and freeze-dried as such or with variable amounts of trehalose as a lyoprotectant. The redispersibility of the particles was determined immediately after freeze-drying and after 12 months of storage at −25° C. The uptake of the nanoparticles by human monocytes was studied in vitro by flow cytometry. Results. PLA-PEO nanoparticles could be produced from all the polymeric blends used. Particle aggregation after freeze-drying was shown to be directly related to the presence of PEO. Whereas this problem could be circumvented by use of trehalose, subsequent aggregation was shown to occur during storage. These phenomena were possibly related to the specific thermal behaviours of PEO and trehalose. In cell studies, a clear relationship between the PEO content and the decrease of uptake was demonstrated. Conclusions. The rational design of freeze-dried PEO-surface modified nanoparticles with potential MPS avoidance ability is feasible by using the polymer blends approach combined with appropriate lyoprotection and optimal storage conditions.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...