Skip to main content
Log in

Formulation and Lyoprotection of Poly(Lactic Acid-Co-Ethylene Oxide) Nanoparticles: Influence on Physical Stability and In Vitro Cell Uptake

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the feasibility of producing freeze-dried poly-(ethylene oxide) (PEO)-surface modified nanoparticles and to study their ability to avoid the mononuclear phagocytic system (MPS), as a function of the PEO chain length and surface density.

Methods. The nanoparticles were produced by the salting-out method using blends of poly(D,L-lactic acid) (PLA) and poly(D,L-lactic acid-co-ethylene oxide) (PLA-PEO) copolymers. The nanoparticles were purified by cross-flow filtration and freeze-dried as such or with variable amounts of trehalose as a lyoprotectant. The redispersibility of the particles was determined immediately after freeze-drying and after 12 months of storage at −25° C. The uptake of the nanoparticles by human monocytes was studied in vitro by flow cytometry.

Results. PLA-PEO nanoparticles could be produced from all the polymeric blends used. Particle aggregation after freeze-drying was shown to be directly related to the presence of PEO. Whereas this problem could be circumvented by use of trehalose, subsequent aggregation was shown to occur during storage. These phenomena were possibly related to the specific thermal behaviours of PEO and trehalose. In cell studies, a clear relationship between the PEO content and the decrease of uptake was demonstrated.

Conclusions. The rational design of freeze-dried PEO-surface modified nanoparticles with potential MPS avoidance ability is feasible by using the polymer blends approach combined with appropriate lyoprotection and optimal storage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Stolnik, L. Illum, and S. S. Davis. Long circulating microparticulate drug carriers. Adv. Drug Del. Rev. 16:195–214 (1995).

    Google Scholar 

  2. V. P. Torchilin and V. S. Trubetskoy. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Del. Rev. 16:141–155 (1995).

    Google Scholar 

  3. J. H. Lee, J. Kopecek, and J. D. Andrade. Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants. J. Biomed Mater. Res. 23:351–368 (1989).

    Google Scholar 

  4. C. G. Gölander, J. N. Herron, K. Lim, P. Claesson, P. Stenius, and J. D. Andrade. Properties of immobilized PEG films and the interaction with proteins. Experiments and modeling. In J. M. Harris (ed.), Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Press, New York, 1992, pp. 221–245.

    Google Scholar 

  5. S. M. Moghimi. Mechanisms regulating body distribution of nanospheres conditioned with pluronic and tetronic block copolymers. Adv. Drug Del. Rev. 16:183–193 (1995).

    Google Scholar 

  6. S. Stolnik, S. E. Dunn, M. C. Garnett, M. C. Davies, A. G. A. Coombes, D. C. Taylor, M. P. Irving, S. C. Purkiss, T. F. Tadros, S. S. Davis, and L. Illum. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm. Res. 11:1800–1808 (1994).

    Google Scholar 

  7. A. E. Hawley, L. Illum, and S. S. Davis. Preparation of biodegradable, surface engineered PLGA nanospheres with enhanced lymphatic drainage and lymph node uptake. Pharm. Res. 14: 657–661 (1997).

    Google Scholar 

  8. R. Gref, Y. Minamitake, M. T. Peracchia, V. S. Trubetskoy, V. P. Torchilin, and R. Langer. Biodegradable long circulating polymeric nanospheres. Science 263:1600–1603 (1994).

    Google Scholar 

  9. M. T. Peracchia, R. Gref, Y. Minamitake, A. Domb, N. Lotan, and R. Langer. PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics. J. Contr. Rel. 46:223–231 (1997).

    Google Scholar 

  10. D. Bazile, C. Prud'Homme, M. T. Bassoullet, M. Marlard, G. Spenlehauer, and M. Veillard. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 84:493–498 (1995).

    Google Scholar 

  11. B. G. Müller and T. Kissel. Camouflage nanospheres: a new approach to bypassing phagocytic blood clearance by surface modified particulate carriers. Pharm. Pharmacol. Lett. 3:67–70 (1993).

    Google Scholar 

  12. M. T. Peracchia, C. Vauthier, F. Puisieux, and P. Couvreur. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J. Biomed. Mater. Res. 34:317–326 (1997).

    Google Scholar 

  13. W. M. Stevels, M. J. K. Ankoné, P. J. Dijkstra, and J. Feijen. Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and poly(ethylene glycol) (B). Macromol. Chem. Phys. 196:3687–3694 (1995).

    Google Scholar 

  14. J. C. Leroux, F. De Jaeghere, B. M. Anner, E. Doelker, and R. Gurny. An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(D,L-lactic acid) nanoparticles by human monocytes. Life Sci. 57:695–703 (1995).

    Google Scholar 

  15. E. Allémann, E. Doelker, and R. Gurny. Drug loaded poly(lactic acid) nanoparticles produced by a reversible salting-out process: purification of an injectable dosage form. Eur. J. Pharm. Biopharm. 39:13–18 (1993).

    Google Scholar 

  16. J. C. Leroux, P. Gravel, L. Balant, B. Volet, B. M. Anner, E. Allémann, E. Doelker, and R. Gurny. Internalization of poly(D,L-lactic acid) nanoparticles by isolated human leukocytes and analysis of plasma proteins adsorbed onto the particles. J. Biomed. Mater. Res. 28:471–481 (1994).

    Google Scholar 

  17. C. J. Van Oss. Phagocytosis: an overview. Methods Enzymol. 132:3–15 (1986).

    Google Scholar 

  18. J. W. Vanderhoff and S. El-Aasser. Theory of colloids. In H. A. Lieberman, M. M. Rieger, and G. S. Banker, (eds), Pharmaceutical dosage forms: dispersed systems, Marcel Dekker, New York, 1988, pp. 93–149.

    Google Scholar 

  19. J. F. Carpenter, S. J. Prestrelski, and T. Arakawa. Separation of freeze-and drying-induced denaturation of lyophilized proteins using stress-specific stabilization I. Enzyme activity and calorimetric studies. Arch. Biochem. Biophys. 303:456–464 (1993).

    Google Scholar 

  20. M. C. Heller, J. F. Carpenter, and T. W. Randolph. Effects of phase separating systems on lyophilized hemoglobulin. J. Pharm. Sci. 85:1358–1362 (1996).

    Google Scholar 

  21. K.-I. Izutsu, S. Yoshioka, S. Kojima, T. W. Randolph, and J. F. Carpenter. Effects of sugar and polymers on crystallization of poly(ethylene glycol) in frozen solutions: phase separation between incompatible polymers. Pharm. Res. 13:1393–1400 (1996).

    Google Scholar 

  22. M. Arakawa, Y. Kita, and J. F. Carpenter. Protein-solvent interactions in pharmaceutical formúlations. Pharm. Res. 8:285–291 (1991).

    Google Scholar 

  23. T. Verrecchia, G. Spenlehauer, and D. V. Bazile. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J. Contr. Rel. 36:49–61 (1995).

    Google Scholar 

  24. M. Auvillain, G. Cavé, H. Fessi, and J. P. Devissaguet. Lyophilisation de vecteurs colloidaux submicroniques. S. T. P. Pharma 5:738–744 (1989).

    Google Scholar 

  25. G. Strauss, P. Schurtenberger, and H. Hauser. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze-thawing and freeze-drying. Biochim. Biophys. Acta 858:169–180 (1986).

    Google Scholar 

  26. D. P. Miller, J. J. de Pablo, and H. Corti. Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharm. Res. 14:578–590 (1997).

    Google Scholar 

  27. X. S. Wu. Synthesis and properties of biodegradable lactic/glycolic acid polymers. In D. L. Wise (ed.), Encyclopedic handbook of biomaterials and bioengineering, Marcel Dekker, New York, 1995, pp. 1015–1054.

    Google Scholar 

  28. J. Bamba, G. Cavé, Y. Bensouda, P. Tchoreloff, F. Puisieux, and G. Couarraze. Cryoprotection of emulsions in freeze-drying: freezing process analysis. Drug Dev. Ind. Pharm. 21:1749–1760 (1995).

    Google Scholar 

  29. K.-I. Izutsu, S. Yoshioka, and T. Terao. Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm. Res. 10:1232–1237 (1993).

    Google Scholar 

  30. F. Franks. Freeze-drying of bioproducts: putting principles into practice. Eur. J. Pharm. Biopharm. 45:221–229 (1998).

    Google Scholar 

  31. S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes. Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory. J. Colloid Interface Sci. 142:149–158 (1991).

    Google Scholar 

  32. W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman. Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res. 25:1547–1562 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gurny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Jaeghere, F., Allémann, E., Leroux, JC. et al. Formulation and Lyoprotection of Poly(Lactic Acid-Co-Ethylene Oxide) Nanoparticles: Influence on Physical Stability and In Vitro Cell Uptake. Pharm Res 16, 859–866 (1999). https://doi.org/10.1023/A:1018826103261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018826103261

Navigation